1.tính giá trị biểu thức
A = 2024/1.2 + 2024/2.3 +2024/3.4 +....+2024/2023.2024
giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)
\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
Vì \(2024>2023=>2024^{2024}>2024^{2023}\)
\(=>2024^{2024}+1>2024^{2023}+1\)
\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)
\(=>A< B\)
\(#PaooNqoccc\)
=2024.2024-2024.4046+2023.2023
=2024.(2024-2023)+2023.(2023-2024
=1-1
=0
\(A=\dfrac{2024}{1.2}+\dfrac{2024}{2.3}+\dfrac{2024}{3.4}+...+\dfrac{2024}{2023.2024}\)
\(A=2024.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2023.2024}\right)\)
\(A=2024.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(A=2024.\left(1-\dfrac{1}{2024}\right)\)
\(A=2024.\dfrac{2023}{2024}\)
\(A=\dfrac{2024}{1}.\dfrac{2023}{2024}\)
\(A=1.2023\)
\(A=2023\)
\(\Rightarrow\) Vậy \(A=2023\)