K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

a) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

             \(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

b) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

            \(\Rightarrow\frac{a+c}{b+d}=\frac{a}{b}\)

24 tháng 7 2019

b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\)\(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)

 \(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)

Cộng các bĐT trên

=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Ta  có Với \(0< \frac{x}{y}< 1\)

=> \(\frac{x}{y}< \frac{x+z}{y+z}\)

Áp dụng ta có 

\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)

Vậy 2<B<3

16 tháng 8 2017

bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi 

16 tháng 8 2017

rồi được rồi nhưng hơi dài nên mình sẽ viết 2 lần nhé

20 tháng 3 2020

$\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}$

Cộng 2 vào mỗi đẳng thức ta có:\(\begin{align} & 2+\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2 \\ & \Leftrightarrow \dfrac{a+b+c+d}{d}=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}\Rightarrow a=b=c=d \\ \end{align}\)

Thay vào P ta được: $P=\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)={{3}^{4}}=81$

25 tháng 3 2019

Ta có:\(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)

\(TH1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)

\(\Rightarrow Q=\left(\frac{-\left(c+d\right)}{c+d}\right)^2+\left(\frac{-\left(a+d\right)}{a+d}\right)^2+\left(\frac{c+d}{-\left(c+d\right)}\right)^2+\left(\frac{a+d}{-\left(a+d\right)}\right)^2\)

\(\Rightarrow Q=\left(-1\right)^2\cdot4=1\cdot4=4\)

\(TH2:a=b=c=d\)

\(\Rightarrow Q=\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2=1^2\cdot4=1\cdot4=4\)

Vậy Q=4

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)