Cho a, b, c là 3 số thực dương TM \(ab+bc+ca>=3\)Tìm GTNN của
\(A=\frac{a^2+b^2+c^2}{\sqrt{a+2017}+\sqrt{b+2017}+\sqrt{c+2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b, c dương nên ta có:
\(a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt{\frac{1}{2}a2b}+\sqrt[3]{\frac{1}{4}ab4c}\le a+\frac{1}{4}a+b+\frac{1}{12}a+\frac{1}{3}b+\frac{4}{3}c=\frac{4}{3}\left(a+b+c\right)\)
(Bất đẳng thức Cô si)
Khi đó:
\(M\ge\frac{3}{4\left(a+b+c\right)}-\frac{3}{\sqrt{a+b+c}}+2017=3\left(\frac{1}{4\left(a+b+c\right)}-\frac{2}{\sqrt{a+b+c}}+1\right)+2014\)
\(=3\left(\frac{1}{2\sqrt{a+b+c}}-1\right)^2+2014\ge2014\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{4}a=b=4c\\\frac{1}{2\sqrt{a+b+c}}=1\end{matrix}\right.\)
Vậy GTNN của M bằng 2014
Biểu thức không có giá trị min bạn nhé. Chỉ có giá trị max.
Lời giải:
\(2P=1-\frac{a}{a+2\sqrt{bc}}+1-\frac{b}{b+2\sqrt{ca}}+1-\frac{c}{c+2\sqrt{ab}}\)
\(=3-\left(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\geq \frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{a+2\sqrt{bc}+b+2\sqrt{ac}+c+2\sqrt{ab}}=\frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}=1\)
Do đó: $2P\leq 3-1=2\Rightarrow P\leq 1$
Vậy $P_{\max}=1$ khi $a=b=c$
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Ta có:
\(\frac{ab}{\sqrt{2017c+ab}}=\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}\)
\(=\frac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM (cô si): \(ab.\frac{1}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}\)
Tương tự với hai BĐT còn lại và cộng theo vế,ta được:
\(A\le\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}+\frac{bc}{2\left(a+b\right)}+\frac{bc}{2\left(a+c\right)}+\frac{ca}{2\left(b+c\right)}+\frac{ca}{2\left(a+b\right)}\)
Thu gọn lại bằng cách cộng những phân thức cùng mẫu và rút gọn phân thức,ta được:
\(A\le\frac{a+b+c}{2}=\frac{2017}{2}\).
Dấu "=" xảy ra khi \(a=b=c=\frac{2017}{3}\)
Vậy...
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2}}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Tương tự với 2 số còn lại, cộng theo vế ta được kết quả cần tìm.
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c