K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5

a, Ta có : \(A\left(x\right)=-11x^5+4x-12x^{2^{ }}+11x^5+13x^2-7x+2\\ \Rightarrow A\left(x\right)=x^2-3x+2\)

  Ta có: \(M\left(x\right)=A\left(x\right).B\left(x\right)\)

\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right).\left(x-1\right)\\\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\\ \Rightarrow M\left(x\right)=x^3-4x^2+5x-2. \)

Vậy...

 

  

4 tháng 5

b) Cho A(x) = 0

x² - 3x + 2 = 0

x² - x - 2x + 2 = 0

(x² - x) - (2x - 2) = 0

x(x - 1) - 2(x - 1) = 0

(x - 1)(x - 2) = 0

x - 1 = 0 hoặc x - 2 = 0

*) x - 1 = 0

x = 0 + 1

x = 1

*) x - 2 = 0

x = 0 + 2

x = 2

Vậy nghiệm của đa thức A(x) là x = 1; x = 2

2 tháng 8 2023

a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)

\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)

\(A=0+x^2+\left(-3x\right)+2\)

\(A=x^2-3x+2\)

Bậc của đa thức là: \(2\)

Hệ số cao nhất là: \(1\) 

b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)

\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)

\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)

\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)

c) A(x) có nghiệm khi:

\(A\left(x\right)=0\)

\(\Rightarrow x^2-3x+2=0\)

\(\Rightarrow x^2-x-2x+2=0\)

\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

8:

a: M(x)=x^4+2x^2+1

N(x)=x^4+2x^2-3x-14

P(x)=M(x)-N(x)=3x+15

P(x)=0

=>3x+15=0

=>x=-5

b: M(x)=x^2(x^2+1)+1>0

=>M(x) vô nghiệm

a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)

\(N\left(x\right)=2x^4+3x^2+4x-5\)

\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)

Đặt P(x)=0

=>-3x-7=0

hay x=-7/3

b: Q(x)=N(x)-M(x)

\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)

\(=4x^4+6x^2+11x+7\)

21 tháng 5 2022

`a)P(x)=M(x)+N(x)`

         `=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`

         `=-3x-7`

Cho `P(x)=0`

`=>-3x-7=0`

`=>-3x=7`

`=>x=-7/3`

________________________________________________________

`b)Q(x)+M(x)=N(x)`

`=>Q(x)=N(x)-M(x)`

`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`

`=>Q(x)=4x^4+6x^2+11x-3`

a: A(x)=2x^3+x^2+4x+1

B(x)=-2x^3+x^2+3x+2

b: M(x)=A(x)+B(x)

=2x^3+x^2+4x+1-2x^3+x^2+3x+2

=2x^2+7x+3

c: M(x)=0

=>2x^2+7x+3=0

=>2x^2+6x+x+3=0

=>(x+3)(2x+1)=0

=>x=-3 hoặc x=-1/2

Bài 3: 

a) Đặt f(x)=0

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b) Đặt f(x)=0

\(\Leftrightarrow x^2-7x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Bài 3:

c) Đặt f(x)=0

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

d) Đặt f(x)=0

\(\Leftrightarrow x^4+2=0\)

\(\Leftrightarrow x^4=-2\)(Vô lý)

`@` `\text {Ans}`

`\downarrow`

`a)`

`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)

`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`

`= x^2 - 8x + 23`

Hệ số cao nhất: `1`

Hệ số tự do: `23`

`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)

`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`

`= -x - 9`

Hệ số cao nhất: `-1`

Hệ số tự do: `-9`

`b)`

`N(x) - B(x) = A(x)`

`=> N(x) = A(x) + B(x)`

`=> N(x) = (x^2 - 8x + 23)+(-x-9)`

`= x^2 - 8x + 23 - x - 9`

`= x^2 - 9x + 14`

 

`A(x) - M(x) = B(x)`

`=> M(x) = A(x) - B(x)`

`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`

`= x^2 - 8x + 23 + x+9`

`= x^2 - 7x +32`

14 tháng 8 2023

a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17

           = 3x^2 + 6 - 12x - 2x^2 + 4x + 17

           = x^2 - 2x + 23

b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)

           = 3x^2 - 7x + 3 - 3x^2 + 6x - 12

           = -x + -9

A(x) = x^2 - 2x + 23

B(x) = -x - 9

Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.

Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.

b)

N(x) - B(x) = A(x)

N(x) - (-x - 9) = x^2 - 2x + 23

N(x) + x + 9 = x^2 - 2x + 23

N(x) = x^2 - 3x + 14

Vậy, N(x) = x^2 - 3x + 14.

A(x) - M(x) = B(x)

x^2 - 2x + 23 - M(x) = -x - 9

x^2 - 2x + x + 9 + 23 = M(x)

x^2 - x + 32 = M(x)

Vậy, M(x) = x^2 - x + 32.

 

`#3107.101107`

`A(x) = 3x - 9x^2 + 4x + 5x^3 + 7x^2 + 1`

`= (3x + 4x) - (9x^2 - 7x^2) + 5x^3 + 1`

`= 7x - 2x^2 + 5x^3 + 1`

`B(x) = 5x^3 - 3x^2 + 7x + 10`

`A(x) - B(x) = 7x - 2x^2 + 5x^3 + 1 - (5x^3 - 3x^2 + 7x + 10)`

`= 7x - 2x^2 + 5x^3 + 1 - 5x^3 + 3x^2 - 7x - 10`

`= (7x - 7x) + (3x^2 - 2x^2) + (5x^3 - 5x^3) - (10 - 1)`

`= x^2 - 9`

`=> C(x) = x^2 - 9`

`C(x) = 0`

`=> x^2 - 9 = 0`

`=> x^2 = 9 => x^2 = (+-3)^2 => x = +-3`

Vậy, nghiệm của đa thức `C(x)` là `x \in {3; -3}.`

2:

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

=>góc MAB=góc MBA

3:

a: Hệ số là -2/3

Biến là x^2;y^7

Bậc là 9

b: \(=3x^2y^2\left(-2\right)xy^5=-6x^3y^7\)