Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AI. Vẽ HE vuong góc với AB và HF vuông góc với AC. chứng minh AI vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
a/ Xét tứ giác AEHF
HE vuông góc AB; AF vuông góc AB => HE//AF
AE vuông góc AC; HF vuông góc AC => AE//HH
=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1)
Mà ^BAC=90
=> AEHF là HCN => AH=EF (hai đường chéo HCN = nhau)
b/ Gọi O là giao của AH và EF
+ Xét tg vuông HCF có IH=IC => IF=IH (Trung tuyến thuộc cạnh huyền băng nửa cạnh huyền)
=> tg IHF cân tại I => ^IHF=^HFI (1)
+ Ta có AH=EF (cmt) và OA=OH; OE=OF (trong HCN các đường chéo cắt nhau tại trung điểm môic đường => OH=OF
=> tg OHF cân tại O => ^OHF=^OFH (2)
+ Mà ^IHF+^OHF=^AHC=90 (3)
=> ^HFI+^OFH=^EFI=90 => EF vuông góc với FI
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a, Vì \(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{CAH}\\\widehat{AHB}=\widehat{AHC}=90^0\\AH.chung\end{matrix}\right.\) nên \(\Delta AHB=\Delta AHC\left(g.c.g\right)\)
Do đó \(AB=AC;\widehat{B}=\widehat{C}\)
b, Vì \(\Delta AHB=\Delta AHC\) nên \(BH=HC\) hay H là trung điểm BC
Mà AH vuông góc BC tại H nên AH là trung trực BC
c, Vì \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\\widehat{BEH}=\widehat{CFH}=90^0\\BH=HC\end{matrix}\right.\) nên \(\Delta BHE=\Delta CHF\left(ch-gn\right)\)
Vì \(AM\perp AH\left(gt\right)\)(1)
và \(BC\perp AH\left(gt\right)\)(2)
Từ(1) và (2)
\(\Rightarrow AM//BC\)(T/c )
Mà \(EF//BC\)(* )
Do \(\widehat{AEF}=\widehat{ABC}\)(do vị trí đồng vị )'
\(\Rightarrow AH\perp EF\)(*)
Mà \(AM\perp AH\left(gt\right)\)(** )
Từ (*) và (** )
\(\Rightarrow AM\perp EF\)
( đpcm)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF