Chứng minh
\(\left(a+b\right)^3=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
=\(a^3+b^3+\left(a^3-b^3\right)\)
=\(a^3+b^3+a^3-b^3\)
=\(2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)
=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)
=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)
a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)
b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
b) \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Biến đổi VT ta có :
+) \(a^3+b^3+c^3=ab+bc+ca\)
\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)
\(\Rightarrow a=b=c\)
< => VT = VP
=> đpcm
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VT\)
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Ghi đúng đề không zạ
Biến đổi vế trái thử nhé:
VT = \(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
= \(\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)
=\(\left(a-b\right)\left(a^2-2ab +b^2\right)\)
=\(\left(a-b\right)\left(a-b\right)^2\)
=\(\left(a-b\right)^3\)\(\ne\)VP