Với giá trị nào của m,n thì hàm số sau là hàm số bậc nhất:
y=\(\left(m^2+m-2\right)\cdot x^2+\left(m^2+mn-2n^2\right)\cdot x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rõ \(\left(m^2-9\right)x^2\)là hạng tử bậc hai, nên để hàm số đã cho là hsbn thì \(m^2-9=0\Leftrightarrow\left(m-3\right)\left(m+3\right)=0\Leftrightarrow\orbr{\begin{cases}m=3\\m=-3\end{cases}}\)
a: ĐKXĐ: \(m\le5\)
b: ĐKXĐ: \(m\notin\left\{-1;1\right\}\)
c: ĐKXĐ: \(m\ne-2\)
Hàm số là hàm số bậc nhất khi và chỉ khi:\(\hept{\begin{cases}m^2+m-2=0\left(1\right)\\m^2+mn-2n^2\ne0\left(2\right)\end{cases}}\).
Giải(1): \(m^2+m-2=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\).
Thay \(m=1\) vào (2) ta được \(1^2+1.n-2n^2\ne0\)\(\Leftrightarrow\left(2n+1\right)\left(1-n\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\).
Thay \(m=-2\) vào (2) ta được:
\(\left(-2\right)^2+\left(-2\right)n-2n^2\ne0\)
\(\Leftrightarrow-2n^2-2n+4\ne0\)
\(\Leftrightarrow\left(n-1\right)\left(n+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).
Vậy hàm số là hàm số bậc nhất khi và chỉ khi: \(m=1\) và \(\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\) hoặc \(m=-2\) và \(\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).