Tìm GTNN của:
1, y=x+2/x^2, x>0
2, y=(x+1)^2+(x^2/x+1 + 2)^2,x khác -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Áp dụng BĐT Bunhiacopxki dạng phân thức
\(A\ge\frac{\left(1+\frac{2}{x}+1+\frac{2}{y}\right)^2}{1+1}=\frac{\left[2+2\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\)
Theo BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
hay \(\frac{\left(2+\frac{8}{x+y}\right)^2}{2}=\frac{\left(10\right)^2}{2}=\frac{100}{2}=50\)
Vậy \(A\ge50\)khi \(x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
1.
Áp dụng BĐT Cô-si:
$y=x+\frac{2}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{2}{x^2}\geq 3\sqrt[3]{\frac{x}{2}.\frac{x}{2}.\frac{2}{x^2}}=3\sqrt[3]{\frac{1}{2}}$
Vậy GTNN của $y$ là $3\sqrt[3]{\frac{1}{2}}$. Giá trị này đạt tại $\frac{x}{2}=\frac{2}{x^2}\Leftrightarrow x=\sqrt[3]{4}$
2.
\(y=(x+1)^2+(\frac{x^2}{x+1}+2)^2=(x+1)^2+(\frac{x^2+2x+2}{x+1})^2\\ =(x+1)^2+[\frac{(x+1)^2+1}{x+1}]^2=(x+1)^2+(x+1+\frac{1}{x+1})^2\)
Đặt $t=x+1$ thì, áp dụng BĐT Cô-si:
\(y=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\geq 2\sqrt{2t^2.\frac{1}{t^2}}+2=2\sqrt{2}+2\)
Vậy $y_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $2t^2=\frac{1}{t^2}\Leftrightarrow t=\pm \sqrt[4]{\frac{1}{2}}$
$\Leftrightarrow x=\pm \sqrt[4]{\frac{1}{2}}-1$