Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA+góc OBA=180 độ
=>OIAB nội tiếp
b: Xét ΔKCE và ΔKBC có
góc KCE=góc KBC
góc K chung
=>ΔKCE đồng dạng với ΔKBC
=>KC/KB=KE/KC
=>KC^2=KB*KE
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>KB=KC
b: Xét ΔABN và ΔAMB có
góc ABN=góc AMB
góc BAN chung
=>ΔABN đồng dạng vói ΔAMB
=>AM*AN=AB^2=3R^2
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{ABN}\) là góc tạo bởi tiếp tuyến BA và dây cung BN
\(\widehat{BMN}\) là góc nội tiếp chắn cung BN
Do đó: \(\widehat{ABN}=\widehat{BMN}\)
Xét ΔABN và ΔAMB có
\(\widehat{ABN}=\widehat{AMB}\)
\(\widehat{BAN}\) chung
Do đó: ΔABN~ΔAMB
=>\(\dfrac{AB}{AM}=\dfrac{AN}{AB}\)
=>\(AB^2=AM\cdot AN\left(1\right)\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(3)
Từ (2),(3) suy ra AO là trung trực của BC
=>AO\(\perp\)BC tại K
Xét ΔABO vuông tại B có BK là đường cao
nên \(AK\cdot AO=AB^2\left(4\right)\)
Từ (1),(4) suy ra \(AK\cdot AO=AN\cdot AM\)
=>\(\dfrac{AK}{AM}=\dfrac{AN}{AO}\)
Xét ΔAKN và ΔAMO có
\(\dfrac{AK}{AM}=\dfrac{AN}{AO}\)
\(\widehat{KAN}\) chung
Do đó: ΔAKN~ΔAMO
=>\(\widehat{AKN}=\widehat{AMO}\)
=>\(\widehat{AKN}=\widehat{OMN}\)
=>\(\widehat{AKN}=\widehat{ONM}\)