Tìm dư khi chia \(1776^{2003}\)cho 4000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số dư khi chia 3218 cho 10000
\(3^2\equiv9\left(mod10000\right)\)
\(3^6\equiv729\left(mod10000\right)\)
\(3^{12}\equiv1441\left(mod10000\right)\)
\(3^{24}\equiv6481\left(mod10000\right)\)
\(3^{48}\equiv3361\left(mod10000\right)\)
\(3^{96}\equiv6321\left(mod10000\right)\)
\(3^{192}\equiv5041\left(mod10000\right)\)
\(3^{218}\equiv6489\left(mod10000\right)\)
Đây chỉ là các bước mk làm ra nháp. có j sai mong bn đừng "soi"
Ta có: \(3^4=81\) có chữ số tận cùng là 1.
=> 2003\(^4\)có chữ số tận cùng là 1
=> \(2003^{400}\)có chữ số tận cùng là 1
lại có: \(2001^{4000}\)có chữ số tận cùng là 1
=> \(2003^{4000}-2001^{4000}\)có chữ số tận cùng là 0
=> \(2003^{4000}-2001^{4000}\) chia hết cho 2 và chia hết cho 5.
Giải:Ta có: 20012 ≡ 4 (mod 2003) ⇒ 200110 ≡ 1024 (mod 2003) ⇒ 200120 ≡ 1007 (mod 2003) ⇒ 200140 ≡ 10072 ≡ 531 (mod 2003) ⇒ 200140.200110 ≡ 1024.531≡ 931 (mod 2003) 200150 ≡ 931 (mod 2003) ⇒ 2001100 ≡ 9312 ≡ 1465 (mod 2003) ⇒ 2001200 ≡ 14652 ≡ 1012 (mod 2003) ⇒ 2001400 ≡ 10122 ≡ 611 (mod 2003) ⇒ 2001400 . 2001100 ≡ 611.1465 ≡ 1777 (mod 2003) 2001500 ≡1777 (mod 2003) ⇒ 20011000 ≡ 17772 ≡ 1001 (mod 2003) ⇒ 20012000 ≡ 10012 ≡ 501 (mod 2003) ⇒ 20012000 . 200110 ≡ 501.1024 ≡ 256 (mod 2003) 20012010 ≡256 (mod 2003)Vậy : 20012010 chia cho 2003 có số dư là 256
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất
Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\) (m,n \(\in\) N*)
a : 2003 dư 32 \(\Rightarrow a=2003n+32\)
\(\Rightarrow2001m+23=2003n+32\)
\(\Rightarrow2001m+23=2001n+2n+32\)
\(\Rightarrow2001m-2001n=2n+32-23\)
\(\Rightarrow2001\left(m-n\right)=2n+9\)
\(\Rightarrow2n+9⋮2001\)
Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất
Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)
Với \(n=996\) thì \(a=2003.996+32=1995020\)
Vậy số cần tìm là 1995020.
Ta có:
72004=74.501=A1
=>A1:10=(A0+1):10=B0+1=B1=>72004:10 dư 1
32003=34.500+3=34.500+33=C1+27=D8:10 dư 8
Ta xét chữ số tận cùng của 72004 và 32003
ta có: 72004 = 74.501 = (.....1)501 = .........1 => tận cùng là 1 => chia 10 dư 1
ta có: 32003 = 34.500+3 = (......1)500 . 33 = (........1) . 27 = ......7 => tận cùng là 7 => chia 10 dư 7
Vậy: 72004 chia 10 dư 1 ; 32003 chia 10 dư 7