CM : (2019^{2008}+2021^{2010}) chia hết cho 2020
cần gắp mn cứu emmm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=10^{2022}+10^{2021}+10^{2020}+10^{2019}+8\)
\(A=8.125\left(10^{2009}+10^{2008}+10^{2007}+10^{2006}\right)+8\)
\(A=8.\left[125.\left(10^{2009}+10^{2008}+10^{2007}+10^{2006}\right)+1\right]⋮8\)
Lại có: \(10^{2012};10^{2011};10^{2010};10^{2009}\) khi chia cho 3 dư 1
Mà 8 chia 3 dư 2
⇒ A chia cho 3 có số dư là dư của phép chia ( 1 + 1 + 1 + 1 + 2 ) : 3
Hay dư của phép chia 6 chia 3 có số dư bằng 0
⇒ A ⋮ 3
Vì 8 và 3 là hai số nguyên tố cùng nhau nên
⇒ A ⋮ ( 8.3 )
⇒ A ⋮ 24
Số nào sau đây chia hết cho 5 là :
A . 2020
B . 2022
C . 2019
D . 2021
Sai đề rồi.
Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
Giải như sau:
\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)