Chứng minh rằng abcabc chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU B NHÉ
TA CÓ
aaaaaa= a . 111111
=a.7.15873
=> aaaaaa chia hết cho 7
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích số. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: a b c a b c ¯ = 1000 a b c ¯ + a b c ¯ = 1001 a b c ¯ Vì 1001 ⋮ 7 ⇒ 1001 a b c ¯ ⋮ 7 ⇒ a b c a b c ¯ ⋮ 7 |
\(\overline{abcabc}=\overline{abc}\times1001⋮13\)
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
giai giupminh bai toan nay voi