a) Cho A=3a2b. Tìm tất cả các chữ số thích hợp của a và b để khi thay A vào ta được số chia cho 2,3 và 5 đều dư 1
b) Cho M =x459y. Hãy thay x và y bằng những chữ số thích hợp để nếu lấy M lần lượt chia cho 5,2 và 9 đều dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy:
a : 5 dư 1 nên y bằng 1 hoặc 6
Mặt khác a : 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591
x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9
Số phải tìm là : 94591
Ta nhận thấy:
- a: 5 dư 1 nên y bằng 1 hoặc 6
- Mặt khác a: 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591
- x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9 Số phải tìm là: 94591
Ta nhận thấy:a : 5 dư 1 nên y bằng 1 hoặc 6.Mặt khác a : 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591.x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9.Số phải tìm là : 94591
Ta nhận thấy :
- a : 5 dư 1 nên y bằng 1 hoặc 6
- Mặt khác a : 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591
- x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9.
Số phải tìm là : 94591
Để 3a2b chia hết cho 2 và 5 => b=0
Ta có số: 3a20
Để 3a20 chia hết cho 3 => (3+a+2+0) chia hết cho 3
=> (5+a) chia hết cho 3, mà a là chữ số
=> 5+a=9
=> a=4
Vậy a=4, b=0
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Bài 5:
Vì số bút chì khi đem chia 5 hoặc 3 thì vừa hết số bút chì sẽ vừa chia hết cho 5; vừa chia hết cho 3
=>Số bút chì sẽ chia hết cho 15
mà số bút chì có nhiều hơn 20 chiếc và ít hơn 35 chiếc
nên số bút chì là 30 chiếc
Để 3a2b chia hết cho 2,5 => 3a2b chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
=> 3a2b có tận cùng là 0 => b = 0
Khi đó : 3a2b trở thành 3a20
Để 3a20 chia hết cho 3 => 3+a+2+0 chia hết cho 3
=> a+5 chia hết cho 3
Mà 0 <= a <= 9 => a = 1;4;7
Vậy ......
k mk nha
Để a chia 5 dư 4 và a chia hết cho 2 thì y=4
=>\(a=\overline{5x14}\)
a chia hết cho 3
=>\(5+x+1+4⋮3\)
=>x+10 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
mà a là số tự nhiên có 4 chữ số khác nhau
nên loại số 5
=>\(x\in\left\{2;8\right\}\)
Ta có:
4*95 có tổng các chữ số là 18 + * . Để 4*95 chia hết cho 9 thì 18 + * chia hết cho 9 vậy *= 0 hoặc * = 9. Vậy số đó là: 4095 hoặc 4995
89*1 có tổng các chữ số là: 18 + *. Để 89*1 chia hết cho 9 thì 18 + * chia hết cho 9 vậy * = 0 hoặc * = 9. Vậy số đó là: 8901 hoặc 8991
891* có tổng các chữ số là: 18 + *. Để 891* chia hết cho 9 thì 18 + * chia hết cho 9 vậy * = 0 hoặc * = 9. Vậy số đó là: 8910 hoặc 8919
*891 có tổng các chữ số là: 18 + *. Để *891 chia hết cho 9 thì 18 + * chia hết cho 9 vậy * = 0 hoặc * = 9. Do * ở hàng cao nhất nên * chỉ có thể bằng 9. Vậy số đó là: 9891
giải rồi đấy OLM DUYỆT ĐI , EM MỎI TAY LẮM
a) chia 2 và 5 dư 1 => b luôn luôn = 1
thế làm sao cho tổng các chữ số chia 3 dư 1 là xong
b) tương tự