tìm giá trị lớn nhất của biểu thức M = \(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT cô si cho 2 số ko âm ta có:
\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)
\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Áp dụng bất đẳng thức AM-GM:
\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);
\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);
\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)
\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Vậy \(P_{max}=\frac{11}{12}\)
Dấu "=" xảy ra khi \(x=2;y=8;z=18\)
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)
Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)
Áp dụng bất đẳng thức Côsi:
\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)
\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)
Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)
tương tự x, y.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
x=2 y=8