K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)

ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)

\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)

\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)

10 tháng 11 2018

x=2 y=8

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may 

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

7 tháng 10 2017

pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)

Áp dụng BĐT cô si cho 2 số ko âm ta có:

\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)

\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)

\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)

\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)

11 tháng 2 2017

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk

31 tháng 10 2020

Áp dụng bất đẳng thức AM-GM:

\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);

\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);

\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)

\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Vậy \(P_{max}=\frac{11}{12}\)

Dấu "=" xảy ra khi \(x=2;y=8;z=18\)

7 tháng 7 2018

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)

Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)

31 tháng 7 2016

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)

Áp dụng bất đẳng thức Côsi:

\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)

\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)

Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)

tương tự x, y.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 7 2016

đề thiếu điều kiện

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy