K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Ta có:

\(OA=OB;OC=OD\)

\(\Rightarrow AC=BD\)

Theo lý thuyết, tứ giác có 2 đường chéo bằng nhau là tứ giác cân

Vậy ABCD là hình thang cân

27 tháng 6 2019

\(\text{https://olm.vn/hoi-dap/detail/223869533876.html}\)

6 tháng 2 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

6 tháng 2 2017

bn nên ghi p a rõ hơn

11 tháng 10 2021

a: Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{CAD}=\widehat{DBC}\)

b: Ta có: ΔADC=ΔBCD

nên \(\widehat{ODC}=\widehat{OCD}\)

hay ΔOCD cân tại O

Suy ra: OC=OD

hay OA=OB

1 tháng 9 2021

a: Xét ΔACD và ΔBDC có

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: ˆACD=ˆBDCACD^=BDC^

hay ˆODC=ˆOCDODC^=OCD^

Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

28 tháng 8 2021

Đề bài ko đủ dữ kiện để chứng minh nha, mk nghĩ phải chỉnh thành hình thang cân.

28 tháng 8 2021

không bằng nha bạn

có j tick mik nha

24 tháng 6 2019

Dễ chứng minh \(\Delta ABD=\Delta BAC\) (c.g.c)

\(\Rightarrow\widehat{DBA}=\widehat{CAB}\Rightarrow\Delta OAB\text{ cân tại O}\Rightarrow OA=OB\) (1)

Mặt khác cũng do \(\Delta ABD=\Delta BAC\) suy ra BD = AC hay OB + OD = OA + OC

Do (1) suy ra OD = OC (2)

Nhân theo từng vế hai đẳng thức (1) và (2) ta được đpcm: OA . OD = OB . OC

P/s: Thực ra ban đầu em chẳng có ý tưởng thế này đâu. Nhưng vừa làm xong bài Câu hỏi của Nguyễn Thị Phương Uyên nên mới nghĩ ra hướng chứng minh tương tự thế này đấy ạ:)

20 tháng 3 2020

sao cm đc abd = bac vậy

27 tháng 7 2020

1/

Xét tam giác AOD và tam giác BOC có 

^CBD=^ADB; ^ACB=^CAD

=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)

2/

Ta có ^ABC=^ADC (2 góc đối hình bình hành)

Xét hai tam giác vuông BCE và tam giác vuông DCG có 

^ECB=^GDC (cùng bù với ^ABC=^ADC)

=> tam giác BCE đồng dạng với tam giác DCG

Câu 31: C

Câu 32: D

Câu 33: C

 

Ta có : AOB + OAB + ABO = 180 độ

DOC + ODC + OCD = 180 độ

Mà AOB = DOC ( 2 góc đối đỉnh) 

=>  OAB + ABO = ODC + OCD 

Mà BAO = OCD ( so le trong) 

ABO =ODC ( so le trong) 

=> BAO = ABO 

=> Tam giác AOB cân tại O

=> OA = OB(dpcm)

=> ODC = OCD 

=> Tam giác DOC cân tại O

=> OC = OD(dpcm)