K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Ta có:    B A M ^ = B ^    ( g t )     C A N ^ = C ^     ( g t )  

Þ AM // BC;   AN // BC  (vì có cặp góc so le trong bằng nhau).

Þ 3 điểm M, A, N thẳng hàng (vì qua điểm A chỉ vẽ được một đường thẳng song song với BC).

Vậy MN // BC mà d ⊥ B C  nên d ⊥ M N      (1)

Ta có: A M = A B ;   A N = A C  

mà AB = AC (gt) nên AM = AN.              (2)

Từ (1) và (2) Þ d là trung trực của MN

a) Xét ΔKIM và ΔAIN có

KI=AI(I là trung điểm của KA)

\(\widehat{KIM}=\widehat{AIN}\)(hai góc đối đỉnh)

IM=IN(I là trung điểm của MN)

Do đó: ΔKIM=ΔAIN(c-g-c)

nên MK=AN(hai cạnh tương ứng)

mà AN=AC(gt)

nên MK=AC(đpcm)

10 tháng 9 2016

Ta có hình vẽ:

d N M A B C

Ta có: 

góc MAB = góc ABC mà MAB và ABC ở vị trí so le trong => AM // BC (1)

góc NAC = góc ACB mà NAC và ACB ở vị trí so le trong => AN // BC (2)

Từ (1) và (2) mà theo tiên đề Ơ-clit qua 1 điểm nằm ngoài 1 đường thẳng chỉ kẻ được đúng 1 đường thẳng song song với đường thẳng ban đầu => MA trùng với NA hay 3 điểm A, M, N thẳng hàng

=> MN // BC

Mà d vuông góc với BC, MN // BC => MN vuông góc với d (quan hệ từ vuông góc -> song song) (2)

Mặt khác, AM = AB, AB = AC, AC = AN

=> AM = AN hay A là trung điểm của MN (3)

Từ (2) và (3) => d là đường trung trực của MN (đpcm)

26 tháng 5 2015

giải xong lỡ bấm nút hủy  rồi   :((    

19 tháng 8 2016

bạn vào: http://olm.vn/hoi-dap/tim-kiem-google?q=%20Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%B3%20AB%20AC.Tr%C3%AAn%20n%E1%BB%ADa%20m%E1%BA%B7t%20ph%E1%BA%B3ng%20b%E1%BB%9D%20AB%20kh%C3%B4ng%20ch%E1%BB%A9a%20C%20l%E1%BA%A5y%20%C4%91i%E1%BB%83m%20M%20sao%20cho%20g%C3%B3c%20BAM%20g%C3%B3c%20B%20v%C3%A0%20AM%20AB.Tr%C3%AAn%20n%E1%BB%ADa%20m%E1%BA%B7t%20ph%E1%BA%B3ng%20b%E1%BB%9D%20AC%20kh%C3%B4ng%20ch%E1%BB%A9a%20B%20l%E1%BA%A5y%20%C4%91i%E1%BB%83m%20N%20sao%20c

8 tháng 12 2017

Hỏi đáp Toán
Lấy điểm M thuộc tia AM sao cho M là trung điểm của AM.
Ta chứng minh được:
\(\Delta AMB=\Delta M'MC\left(c.g.c\right)\) suy ra AB = BM'.
\(\Delta AMC=\Delta M'MB\left(c.g.c\right)\Rightarrow AC=BM'\), \(\widehat{CAM}=\widehat{BM'M}\).
Theo định lý tổng ba góc trong tam giác:
\(\widehat{M'AB}+\widehat{BM'A}+\widehat{ABM'}=180^o\Leftrightarrow\widehat{BAM'}+\widehat{ABM'}+\widehat{M'AC}=180^o\).
\(\widehat{DAE}+\widehat{BAM}+\widehat{MAC}=180^o\).
Suy ra \(\widehat{DAE}=\widehat{ABM'}\).
Xét tam giác DAE và tam giác ABM' cóL
DA = AB.
BM' = AC = AE.
\(\widehat{DAE}=\widehat{ABM'}\).
Suy ra \(\Delta DAE=\Delta AB'M\left(c.g.c\right)\).
Suy ra DM = AM' = 2AM. (đpcm).