Cho hệ phương trình{3x+ay=52x+y=b.Tìm a,b để hệ a,Có nghiệm duy nhất b,Vô nghiệm c,Vô số nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hệ phương trình
Có nghiệm duy nhất khi
Có vô số nghiệm khi
Do đó, hệ phương trình đã cho có nghiệm duy nhất khi
Hệ phương trình đã cho có vô số nghiệm khi ⇔ không tồn tại m thỏa mãn
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Lời giải:
Từ PT (2) $\Leftrightarrow y=b-2x$
Thay vào PT(1) thì:
$3x+a(b-2x)=5$
$\Leftrightarrow (3-2a)x=5-ab(*)$
Để hệ có nghiệm duy nhất thì PT $(*)$ phải có nghiê $x$ duy nhất.
Điều này xảy ra khi $3-2a\neq 0\Leftrightarrow a\neq \frac{3}{2}$.
Khi đó:
$x=\frac{5-ab}{3-2a}$
$y=b-2x=b-\frac{10-2ab}{3-2a}=\frac{3b-10}{3-2a}$
Để hệ có vô số nghiệm thì PT $(*)$ phải có vô số nghiệm $x$. Điều này xảy ra khi $3-2a=5-ab=0$
$\Leftrightarrow a=\frac{3}{2}; b=\frac{10}{3}$
Để hệ vô nghiệm thì PT $(*)$ vô nghiệm $x$. Điều này xảy ra khi $3-2a=0$ và $5-ab\neq 0$
$\Leftrightarrow a=\frac{3}{2}$ và $b\neq \frac{10}{3}$