K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7

Lời giải:

Từ PT (2) $\Leftrightarrow y=b-2x$

Thay vào PT(1) thì: 

$3x+a(b-2x)=5$

$\Leftrightarrow (3-2a)x=5-ab(*)$

Để hệ có nghiệm duy nhất thì PT $(*)$ phải có nghiê $x$ duy nhất.

Điều này xảy ra khi $3-2a\neq 0\Leftrightarrow a\neq \frac{3}{2}$.

Khi đó:

$x=\frac{5-ab}{3-2a}$

$y=b-2x=b-\frac{10-2ab}{3-2a}=\frac{3b-10}{3-2a}$

Để hệ có vô số nghiệm thì PT $(*)$ phải có vô số nghiệm $x$. Điều này xảy ra khi $3-2a=5-ab=0$

$\Leftrightarrow a=\frac{3}{2}; b=\frac{10}{3}$

Để hệ vô nghiệm thì PT $(*)$ vô nghiệm $x$. Điều này xảy ra khi $3-2a=0$ và $5-ab\neq 0$

$\Leftrightarrow a=\frac{3}{2}$ và $b\neq \frac{10}{3}$

27 tháng 1 2018

a) Hệ phương trình Đề kiểm tra Toán 9 | Đề thi Toán 9

Có nghiệm duy nhất khi Đề kiểm tra Toán 9 | Đề thi Toán 9

Có vô số nghiệm khi Đề kiểm tra Toán 9 | Đề thi Toán 9

Do đó, hệ phương trình đã cho có nghiệm duy nhất khi Đề kiểm tra Toán 9 | Đề thi Toán 9

Hệ phương trình đã cho có vô số nghiệm khi Đề kiểm tra Toán 9 | Đề thi Toán 9 ⇔ không tồn tại m thỏa mãn

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

1: mx+y=2m+2 và x+my=11

Khi m=-3 thì hệ sẽ là:

-3x+y=-6+2=-4 và x-3y=11

=>-3x+y=-4 và 3x-9y=33

=>-8y=29 và 3x-y=4

=>y=-29/8 và 3x=y+4=3/8

=>x=1/8 và y=-29/8

2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)

=>m^2<>1

=>m<>1 và m<>-1

Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)

=>(m=1 hoặc m=-1) và (11m=2m+2)

=>\(m\in\varnothing\)

Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11

=>m=1 hoặc m=-1

11 tháng 9 2023

bạn giúp mình trả lời câu hỏi toán mình mới đăng trong trang của mình được ko ạ