(x^2-4)+(x-2)(3-2x)=0
help me pllllll
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
\(x^2-11x-26=0\)
\(x^2-13x+2x-26=0\)
\(x.\left(x-13\right)+2.\left(x-13\right)=0\)
\(\left(x+2\right).\left(x-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-13=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=13\end{cases}}\)
vậy...
P/S: lớp 7 sai sót mong thông cảm
\(x^4-2x^3+3x^2-2x+1=0\)
Chia cả hai vé cho \(x^2\)
\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)
\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt x+1/x = a, ta có:
\(a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2+1=x\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)
Do đó phương trình vô nghiệm
\(\left(2x-2\right)\left(x-4\right)=0\)
\(=>2x-2=0;x-4=0\)
\(TH1:2x-2=0\)
\(2x=2\)
\(=>x=1\)
\(TH2:x-4=0\)
\(x=4\)
\(=>x\in\left\{1;4\right\}\)
\(\left(2x-1\right)\left(x-2\right)=0\)
\(=>2x-1=0;x-2=0\)
\(TH1:2x-1=0\)
\(2x=1\)
\(=>x=\frac{1}{2}\)
\(TH2;x-2=0\)
\(x=2\)
\(=>x\in\left\{\frac{1}{2};2\right\}\)
7.(x+2)-4.(x-1)=30
7x+14-4x+4=30
3x+18=30
3x=12
x=4
Vậy x=4
(2x -2).(x-4)=0
suy ra 2x-2=0 hoặc x-4=0
suy ra x=1 hoặc x=4
Vậy x=1 hoặc x=4
(2x -1).(x-2)=0
suy ra 2x-1=0 hoặc x-2=0
suy ra x=1/2 hoặc x=2
Vậy x=1/2 hoặc x=2
a) \(\left(2x+3\right).\left(\frac{1}{2}.x-\frac{3}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\\frac{1}{2}.x-\frac{3}{2}=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}2x=-3\\\frac{1}{2}.x=\frac{3}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\frac{3}{2}:\frac{1}{2}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=3\end{cases}}\)
Vậy x = \(-\frac{3}{2}\) hoặc x = 3
b)\(\left(\frac{1}{2}-x\right)^2=\frac{64}{49}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)^2=\left(\frac{8}{7}\right)^2\) hoặc \(\left(\frac{1}{2}-x\right)^2=\left(-\frac{8}{7}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}-x=\frac{8}{7}\\\frac{1}{2}-x=-\frac{8}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}-\frac{8}{7}\\x=\frac{1}{2}+\frac{8}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{9}{14}\\x=\frac{23}{14}\end{cases}}\)
Vậy x = \(-\frac{9}{14}\) hoặc x = \(\frac{23}{14}\)
c) \(\frac{1}{2}.\left(x-4,5\right)=\frac{3}{4}.x=\frac{5}{12}\) ( câu này mik ko hiểu cho lắm)
k mik nha mn!
\(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)