K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7

 Xét đường thẳng BC, có AH, AB lần lượt là đường vuông góc và đường xiên kẻ từ A đến BC. Do đó \(AH< AB\).

 Chứng minh tương tự, ta được \(BK< BC\) và \(CL< CA\)

 Cộng theo vế 3 BĐT vừa tìm được, ta có:

 \(AH+BK+CL< AB+BC+CA\) (đpcm)

8 tháng 4 2015

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB  + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

27 tháng 3 2016

a) Xét tam giác vuông AHC có AC là cạnh lớn nhất ( cạnh lớn nhất trong tam giác vuông)                                    => AC>HC (1)                                                                                                                                                 Xét tam giác vuông AHB có AB là cạnh lớn nhất (canh lớn nhất trong tam giác vuông)                                        =>AB>HB  (2)                                                                                                                                                 Ta có : HC+HB+BC ( H nằm giũa A và C)  (3)                                                                                                  Từ (1) , (2) và (3) => AC+AB>BC                                                                                                                    b)Xét tam giác ABC có BC là cạnh lớn nhất(gt)                                                                                               =>BC>AB                                                                                                                                                  Ta có : AC>0 => BC+AC>AB                                                                                                                       Xét tam giác ABC có BC là cạnh lớn nhất (gt) =>BC>AC                                                                             Vì AB>0=>BC+AB>AC

9 tháng 3 2017

Theo kết quả câu a và câu b

MA + MB < IB + IA < CA + CB nên MA + MB < CA + CB.

5 tháng 9 2017

Xét tam giác ABC vì BC là cạnh lớn nhất nên AB < BC và AC < BC.

Mà ta lại có: AC > 0 và AB > 0 hay 0 < AC và 0 < AB

Giải bài 20 trang 64 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ Đpcm

 

19 tháng 4 2017

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

15 tháng 12 2018

Theo giả thiết, tam giác ABC có độ dài cạnh BC là lớn nhất nên chân đường vuông góc kẻ từ A đến cạnh BC chắn chắn phải nằm giữa B và C.

Suy ra H nằm giữa B và C.

⇒ HB + HC = BC

+) Xét tam giác AHB vuông tại H ta có: HB < AB (1) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

+) Xét tam giác AHC vuông tại H ta có: HC < AC (2) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

Lấy (1) + (2) ta được:

HB + HC < AB + AC

Mà HB + HC = BC suy ra BC < AB + AC hay AB + AC > BC