x.x+x=272
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x-1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy: \(S=\left\{\dfrac{1}{3}\right\}\)
b) Ta có: \(5x-2=x+4\)
\(\Leftrightarrow5x-x=4+2\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(S=\left\{\dfrac{3}{2}\right\}\)
Đặt x+7=tx+7=t , khi đó:
(t−1)4+(t+1)4=272(t-1)4+(t+1)4=272
⇔(t2−2t+1)2+(t2+2t+1)2=272⇔(t2-2t+1)2+(t2+2t+1)2=272
⇔(t2+1)2−4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272⇔(t2+1)2-4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272
⇔2(t2+1)2+8t2=272⇔2(t2+1)2+8t2=272
⇔t4+2t2+1+4t2=136⇔t4+2t2+1+4t2=136
⇔t4+6t2−135=0⇔t4+6t2-135=0
⇔t4−9t2+15t2−135=0⇔t4-9t2+15t2-135=0
⇔t2(t2−9)+15(t2−9)=0⇔t2(t2-9)+15(t2-9)=0
⇔(t2−9)(t2+15)=0⇔(t2-9)(t2+15)=0
Vì t2+15 ≥15∀tt2+15 ≥15∀t
⇔t=±3⇔t=±3
* Với t=3t=3 , ta có: x+7=3x+7=3 ⇔x=−4⇔x=-4
* Với t=−3t=-3 , ta có: x+7=−3x+7=-3 ⇔x=−10⇔x=-10
S= { −4;−10-4;-10 }
\(\Leftrightarrow\left(x-7+1\right)^4+\left(x-7-1\right)^4=272\)
Đặt x-7 = t, ta có :
\(\left(t+1\right)^4+\left(t-1\right)^4=272\)
\(\Leftrightarrow t^4+4t^4+6t^2+4t+1+t^4-4t^3+6t^2-4t+1-272=0\)
\(\Leftrightarrow2t^4+12t^2-270=0\)
\(\Leftrightarrow t^4+6t^2-135=0\)
\(\Leftrightarrow\left(t^2+15\right)\left(t^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t^2+15=0\\t^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t^2=-15\left(loai\right)\\t=\pm3\end{cases}}}\)
\(\cdot t=3\Leftrightarrow x-7=3\Leftrightarrow x=10\)
\(\cdot t=-3\Leftrightarrow x-7=-3\Leftrightarrow x=4\)
Vậy phương trình có tập nghiệm \(S=\left\{10;4\right\}\)
Chúc bạn học tốt nha ~~
Đặt \(x+7=a\)
\(pt\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4=272\)
\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=272\)
\(\Leftrightarrow2a^4+12a^2+2=272\)
\(\Leftrightarrow2a^4+12a^2-270=0\)
\(\Leftrightarrow2\left(a^4+6a^2-135\right)=0\)
\(\Leftrightarrow a^4-3a^3+3a^3-9a^2+15a^2-45a+45a-135=0\)
\(\Leftrightarrow a^3\left(a-3\right)+3a^2\left(a-3\right)+15a\left(a-3\right)+45\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a^3+3a^2+15a+45\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left[a^2\left(a+3\right)+15\left(a+3\right)\right]=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)\left(a^2+15\right)=0\)
Vì \(a^2+15>0\forall x\)
\(pt\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
Thay \(a=x+7\)ta có pt :
\(\left(x+7-3\right)\left(x+7+3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-10\end{cases}}\)
Vậy....
x^4*4x^3*2+6x^2*2^2+4x*2^3+2^4+x^4+4x^3*8+6x^2*8^2+4x*8^3+8^4=272
2x^4+40x^3+408x^2+2080x+4112=272
Đến đây là bt ra x = -4
\(\left(x+1\right)^4+\left(x+3\right)^4=272\)
mk thấy đề sai thì phải,sửa nha.
\(\left(x+1\right)^4+\left(x+3\right)^4=256\)
\(\left(x+1\right)^4+\left(x+3\right)^4=4^4\)
TH1 : \(\left(x+1\right)+\left(x+3\right)=4\)
\(x+1+x+3=4\)
\(2x+4=4\Leftrightarrow2x=0\Leftrightarrow x=0\)
TH2 : \(\left(x+1\right)+\left(x+3\right)=-4\)
\(x+1+x+3=-4\)
\(2x+4=-4\Leftrightarrow2x=-8\Leftrightarrow x=-4\)
Lâu lâu chưa lạm dụng đến,chỉ nhớ bình phương chia 2 TH thôi,có j thông cảm ạ.
(x+2)^4 + (x+8)^4 = 272
*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại)
* t = x+5 = -1 <=> x = -6
* t = x+5 = 1 <=> x = -4
KL: ptrình có 2 no: x = -6 or x = -4
~ ~ ~
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab
đặt u = (x+8)(x+2)
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u
=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u²
có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x...
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab
đặt u = (x+8)(x+2)
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u
=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u²
có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x...
Kẻ đường cao xuất phát từ đỉnh góc \(70^0\). Chẳng hạn ta có phương trình sau :
\(x.\sin30^0=4\sin80^0\)
x.x + x = 272
x.x + x - 272 = 0
x.x + x.(17 - 16) - 272 = 0
x.x + 17.x - 16.x - 272 =0
x.(x + 17) - 16.(x + 17) = 0
(x - 16).(x + 17) = 0
TH1: x - 16 = 0
x = 16
TH2: x + 17 = 0
x = -17