tìm số nguyên x,y biết:
xy-3x-2y+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-2y-7=0
=>(xy-2y)+3x-7=0
=>y(x-2)+3x-6=-1
=>y(x-2)+3(x-2)=-1
=>(y+3)(x-2)=-1
=>y+3 và x-2 thuộc Ư(1)={1;-1}
Xét y+3=1 =>y=2 <=>x-2=-1 =>x=1
Xét y+3=-1 =>y=-4 <=>x-2=1 =>x=3
Cách 1
Từ (1) ta rút ra được y = 3x – 5 (*)
Thế (*) vào phương trình (2) ta được :
5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.
Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.
Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).
Từ (2) ta rút ra được y = 2x + 8 (*)
Thế (*) vào phương trình (1) ta được :
3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.
Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.
Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).
Từ (1) ta rút ra được x = 2 3 y (*)
Thế (*) vào phương trình (2) ta được :
Thay y = 6 vào (*) ta được x = 4.
Vậy hệ phương trình có nghiệm duy nhất (x ; y) = (4 ; 6).
Cách 2
Kiến thức áp dụng
+ Giải hệ phương trình ta làm như sau:
Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .
Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.
+ Nếu xuất hiện phương trình dạng 0x = a (hoặc 0y = a) thì ta kết luận hệ phương trình vô nghiệm nếu a ≠ 0 hoặc hệ có vô số nghiệm nếu a = 0.
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
Ta có: x2y + xy - 2x2 - 3x + 4 = 0
=> x2(y - 2) + x(y - 2) - (x + 1) = -5
=> (x2 + x)(y - 2) - (x + 1) = -5
=> x(x + 1)(y - 2) - (x + 1) = -5
=> (x - 1)[x(y - 2) - 1] = -5
=> x - 1; x(y - 2) - 1 \(\in\)Ư(-5) = {1; -1; 5; -5}
Với : x - 1 = 1 => x = 2
x(y - 2) - 1 = -5 => x(y - 2) = -4 => y - 2 = -2 => y = 0
x - 1 = -1 => x = 0
x(y - 2) - 1 = 5 => x(y - 2) = 6 (ktm vì x = 0)
x - 1 = 5 => x = 6
x(y - 2) - 1 = -1 => x(y - 2) = 0 => y - 2 = 0 => y = 2
x - 1 = -5 => x = -4
x(y - 2) - 1 = 1 => x(y - 2) = 2 => y - 2 = -1/2 => y = 3/2
Vậy ...
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha
xy-3x-2y+1=0
x(y-3)-2y+1=0
2x(y-3)-4y+2=0
2x(y-3)-4y+2+10-10=0
2x(y-3)-4y+12=0+10
2x(y-3)-4(y-3)=10
(y-3)(2x-4)=10
10=1.10=2.5=(-1)(-10)=(-2)(-5)
Vì 2x-4 là số chẵn
Ta có bảng:
Vậy (x;y)ϵ{(7;4);(3;8);(-3;2);(1;-2)}