Tìm GTNN của:M=x^2+2x+/y-1/+2017
Tìm Max:N=-4x^2+6x+2017
Lưu ý:/....../ là Giá Trị Tuyệt Đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2\left|4,5x-9\right|-18\)
Vì \(\left|4,5x-9\right|\ge0\forall x\)
=> \(2\left|4,5x-9\right|-18\ge-18\)
Dấu " = " xảy ra khi và chỉ khi |4,5x - 9| = 0 => 4,5x - 9 = 0 => 4,5x = 9 => x = 2
Vậy \(B_{min}=-18\)khi x = 2
\(C=\left(2x+1\right)^2-1990\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)
=> \(\left(2x+1\right)^2-1990\ge-1990\forall x\)
Dấu " = " xảy ra khi và chỉ khi (2x + 1)2 = 0 => 2x + 1 = 0 => x = -1/2
Vậy \(C_{min}=-1990\)khi x = -1/2
\(D=\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\)
=> \(\left(x+1\right)^2+\left|y+5\right|\ge0\forall x\)
=> \(\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\ge-\frac{3}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
Vậy \(D_{min}=-\frac{3}{2}\)khi \(\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
có : (x-1)2 và l y-1 l luôn lớn hơn hoặc = 0 với mọi x
=> 2(x-1)2 + l y+1l luôn lớn hơn hoặc bằng 0
Dấu bằng xảy ra <=> 2(x-1)2 = 0 và y+1=0
<=> x-1=0 và y=-1
<=>x=1 và y=-1
vậy Min A=0 khi x=1 và y=-1
nha
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
\(\left|4x-2\right|=\left|8-2x\right|\)
\(\Rightarrow\orbr{\begin{cases}4x-2=8-2x\\4x-2=-\left(8-2x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-2=8-2x\\4x-2=-8+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2x=2+8\\4x-2x=2-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\2x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10:6\\x=-6:2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{5}{3}\\x=-3\end{cases}}\)
2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3
3. 4x=21
4x=-21 tự tính
x-1.5=2
x-1.5=-2
x+3/4=1/2
x+3/4=-1/2
óc chó có thật
Làm đi