chứng tỏ
a,(n+10).(n+5) là bội của 2
b,n.(n+1).(n+2)là bội của 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (n+10).(n+5) là bội của 2
Giải :
Ta có : 10 là số chẵn, 5 là số lẻ.
--> n+10 và n+5 sẽ có 2 trường hợp:
* n+10 là chẳn, n+5 là lẻ
* n+10 là lẻ, n+5 là chẵn
Mà chẵn x lẻ = chẵn và chẵn chia hết cho 2
---> (n+10).(n+5) là bội của 2
b, tương tự
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
5/
+/ n-1=(n+5)-6 => để n-1 là bội của n+5 thì 6 phải chia hết cho n+5 => n+5={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-11, -8, -7, -6, 1, 2, 3, 4}. (1)
+/ n+5=n-1+6 => để n+5 là bội của n-1 thì 6 phải chia hết cho n-1 => n-1={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-5; -2; -1; 0; 2; 3; 4; 7} (2)
Từ (1) và (2), để thỏa mãn đầu bài thì n={2; 3; 4}
6) a) n2-7=n2+3n-3n-9+2 = n(n+3)-3(n+3)+2
=> Để n2-7 là bội của n+3 thì 2 phải chia hết cho n+3 => n+3={-2, -1, 1, 2} => n={-5; -4; -2; -1}
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
1.Tìm x∈N
a, n-1 là bội của n+5 và n+5 là bội của n-1
Giải:
Với \(n-1\) là bội của \(n+5\)
\(\Rightarrow n-1\) chia hết cho \(n+5\)
\(\Rightarrow n+5-6\) chia hết cho \(n+5\)
\(\Rightarrow6\) chia hết cho \(n+5\)
\(\Rightarrow n+5\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\left(1\right)\)
Với \(n+5\)là bội của \(n-1\)
\(\Rightarrow n+5⋮n+1\)
\(\Rightarrow n-1+6⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{2;0;3-;1;4;-2;7;-5\right\}\left(2\right)\)
nếu hỏi riêng thì :
\(n\in N\Rightarrow\) n= {.....} thì .....là bội của ....
còn thỏa mãn cả hai thì :
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow n=-2\)thì .....................mà \(n\in N\Rightarrow\)không tìm được n