Cho em hỏi bài này:
A= 1/1*6 + 1/2*9 + 1/3*12 + 1/4*15 +.... + 1/32*99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{9}+\dfrac{9}{15}+\dfrac{16}{24}=\dfrac{1}{3}+\dfrac{9}{15}+\dfrac{2}{3}=\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{10}{15}=\dfrac{24}{15}=\dfrac{8}{5}\)
\(\dfrac{4}{10}+\dfrac{12}{32}+\dfrac{9}{15}=\dfrac{2}{5}+\dfrac{3}{8}+\dfrac{3}{5}=\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{3}{8}=\dfrac{5}{5}+\dfrac{3}{8}=1+\dfrac{3}{8}=1\dfrac{3}{8}=\dfrac{11}{8}\)
\(\dfrac{1}{6}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{18}=\dfrac{3}{18}+\dfrac{9}{18}+\dfrac{6}{18}+\dfrac{1}{18}=\dfrac{19}{18}\)
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
a)
Ta có : ( 1 + 2 + 3 + ... + 99)
Số số hạng là: ( 99 - 1 ) : 1 + 1 = 100
Tổng là: ( 99 + 1 ) x 100 : 2 = 5000
=> 5000 x ( 13 - 12 - 1 ) x 15
=> 5000 x 10 x 15
=> 50000 x 15
=> 750000
Ko muốn vt nx :))
Tính nhanh mỗi biểu thức sau:
a, 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
= (0 + 20) + (1 + 19) + (2 + 18) + (3 + 17) + (4 + 16) + (5 + 15) + (6 + 14) + (7 + 13) + (8 + 12) + (9 + 11) + 10
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10
= 20 x 10 + 10
= 200 + 10
= 210
b, 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (4 x 9 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (36 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0
= A x 0
= 0
c, (81 - 7 x 9 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (81 - 63 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (18 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 :(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 : A
= 0
d, (6 x 5 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (30 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (37 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x A
= 0
e, (11 x 9 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 + 1 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= (100 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= 0 : (1 x 2 x 3 x 4 x ... x 10)
= 0 : A
= 0
g, (m : 1 - m x 1) : (m x 2008 + m x 2008)
= (m - m) : (m x 2008 + m x 2008)
= 0 : (m x 2008 + m x 2008)
= 0 : A
= 0
h, (2 + 4 + 6 + 8 + m x n) x (324 x 3 - 972)
= (2 + 4 + 6 + 8 + m x n) x (972 - 972)
= (2 + 4 + 6 + 8 + m x n) x 0
= A x 0
= 0
l, (1 + 2 + 3 + ... + 99) x (13 x 15 - 12 x 15 - 15)
= (1 + 2 + 3 + ... + 99) x (15 x (13 - 12 - 1))
= (1 + 2 + 3 + ... + 99) x (15 x 0)
= (1 + 2 + 3 + ... + 99) x 0
= A x 0
= 0
i, (0 x 1 x 2 x...x 99 x 100) : (2 + 4 + 6 +...+ 98)
= 0 x : (2 + 4 + 6 +...+ 98)
= 0 x A
= 0
k, (0 + 1 + 2 +...+ 97 + 99) x (45 x 3 - 45 x 2 - 45)
= (0 + 1 + 2 +...+ 97 + 99) x (45 x (3 - 2 - 4))
= (0 + 1 + 2 +...+ 97 + 99) x (45 x 0)
= (0 + 1 + 2 +...+ 97 + 99) x 0
= A x 0
= 0
a: \(=\dfrac{15}{4}:\dfrac{2-7}{16}-\dfrac{5}{9}\cdot\left(\dfrac{3}{5}+\dfrac{4}{5}\right)\)
\(=\dfrac{15}{4}\cdot\dfrac{16}{-5}-\dfrac{5}{9}\cdot\dfrac{7}{5}\)
\(=\dfrac{-240}{20}-\dfrac{7}{9}=-12-\dfrac{7}{9}=\dfrac{-115}{9}\)
c: \(=\dfrac{1}{5}-\dfrac{7}{2}-\dfrac{3}{2}+\dfrac{5}{4}\)
\(=\dfrac{4+25}{20}-5=\dfrac{29}{20}-\dfrac{100}{20}=\dfrac{-71}{20}\)
d: \(=\dfrac{12}{17}\left(1-\dfrac{1}{15}-\dfrac{4}{5}+1\right)=\dfrac{12}{17}\cdot\dfrac{17}{15}=\dfrac{12}{15}=\dfrac{4}{5}\)
e: \(=\dfrac{2}{15}\cdot\dfrac{9}{8}-\dfrac{7}{4}\cdot\dfrac{9}{8}+\dfrac{25}{36}\)
\(=\dfrac{9}{8}\left(\dfrac{2}{15}-\dfrac{7}{4}\right)+\dfrac{25}{36}\)
\(=\dfrac{9}{8}\cdot\dfrac{8-105}{60}+\dfrac{25}{36}\)
\(=\dfrac{9}{8}\cdot\dfrac{-97}{60}+\dfrac{25}{36}=\dfrac{-1619}{1440}\)
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
a) 19 + (29 - 9*37) - (63*9 - 29*99)
= 19 + 29 - 9*37 - 63*9 + 29*99
= 19 + 29(1 + 99) - 9(37 + 63)
= 19 + 29*100 - 9*100
= 19 + 100(29 - 9)
= 19 + 100*20
= 19 + 2000 = 2019
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
= \(\frac{2^6+2^5+2^4+2^3+2^2+2+1}{2^7}\)
= \(\frac{64+32+16+8+4+2+1}{128}\) = \(\frac{127}{128}\)
\(\dfrac{1}{1\cdot6}+\dfrac{1}{2\cdot9}+\dfrac{1}{3\cdot12}+...+\dfrac{1}{32\cdot99}\)
\(=\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{96\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{96}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)