Thu gọn rồi tìm bậc của đơn thức
1/3(6xy²)².(-5/4x⁴y³)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5-3xy^3-6xy^2+xy^3+3x^5y=x^5-\left(3xy^3-xy^3\right)-6xy^2+3x^5y=x^5-2xy^3-6xy^2+3x^5y\)
Bậc:6
Lời giải:
a) $P(x)= 5x+x^3y-2xy+4x^3y+3x^2y-10x$
$=(x^3y+4x^3y)+3x^2y-2xy+(5x-10x)$
$=5x^3y+3x^2y-2xy-5x$
$Q(x)=4x-5x^3y+2x^2y-x^3y+6xy+11x^3-8x$
$=-6x^3y+2x^2y+11x^3+6xy-4x$
$P(x)-Q(x)=11x^3y+x^2y-8xy-x-11x^3$
Bậc của $P(x)-Q(x)$ là $3+1=4$
b)
$P(x)+Q(x)=-x^3y+5x^2y+4xy-9x+11x^3$
$P(x)-Q(x)$ đã thu gọn ở phần a.
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=-2x^4y^3+7xy^2\)
Bậc : 7
b, Thay x = 1 ; y = 1
\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\)
\(=2+7=9\)
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4
=2x^3+11x^2-x+3
b: Bậc là 3
Hệ số cao nhất là 2
c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3
=x^2-2x
C(X)=0
=>x=0 hoặc x=2
a) 6xy.2x3yz2=(6.2).(x.x3).(y.y).z2=12x4.y2.z2
=> Hệ số: 12; Phần biến: x4y2z2; Bậc đơn thức: 8
b) 12x3y2.(-3/4 xy2)= [12.(-3/4)]. (x3.x).(y2.y2)= -9.x4.y4
=> Hệ số: -9; Phần biến: x4.y4; Bậc đơn thức: 8
c)
\(\dfrac{1}{5}x^3y.\left(-5x^4yz^3\right)=\left[\dfrac{1}{5}.\left(-5\right)\right].\left(x^3.x^4\right).\left(y.y\right).z^3\\ =-x^7y^2z^3\)
=> Hệ số: -1; Phần biến: x7y2z3; Bậc đơn thức: 12
d) \(-\dfrac{3}{8}x^3y^2z.\left(4x^2yz\right)^3=\left[-\dfrac{3}{8}.4^2\right].\left(x^3.x^{2.3}\right).\left(y^2.y\right).\left(z.z^3\right)=-6.x^9y^3z^4\)
=> Hệ số: -6; Phần biến: x9y3z4; Bậc đơn thức: 16
\(\dfrac{1}{3}\left(6xy^2\right)^2\cdot\left(-\dfrac{5}{4}x^4y^3\right)\\ =\dfrac{1}{3}\cdot36x^2y^4\cdot\left(-\dfrac{5}{4}x^4y^3\right)\\ =\left(\dfrac{1}{3}\cdot36\cdot\dfrac{-5}{4}\right)\cdot\left(x^2\cdot x^4\right)\cdot\left(y^4\cdot y^3\right)\\ =-15x^6y^7\)
Bậc: `6+7=13`
\(\dfrac{1}{3}\left(6xy^2\right)^2\cdot\left(-\dfrac{5}{4}x^4y^3\right)=\dfrac{1}{3}\cdot36x^2y^4\cdot\dfrac{-5}{4}x^4y^3\)
\(=12\cdot\dfrac{-5}{4}\cdot x^6y^7=-15x^6y^7\)
Bậc là 6+7=13