K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8

\(m.\left(\dfrac{14}{3}+\dfrac{14}{15}+...+\dfrac{14}{195}\right)=1\)

=> \(m.7.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{13.15}\right)=1\)

=> \(7m.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=1\)

=> \(7m.\left(1-\dfrac{1}{15}\right)=1\)

=> \(\dfrac{7m.14}{15}=1\)

=> \(m=\dfrac{15}{98}\)

18 tháng 9 2023

\(5-\dfrac{2}{3}-\dfrac{14}{15}+\dfrac{1}{35}-\dfrac{62}{63}-\dfrac{98}{99}-\dfrac{142}{143}\)

\(=5-\left(1-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{15}\right)+\dfrac{1}{35}-\left(1-\dfrac{1}{63}\right)-\left(1-\dfrac{1}{99}\right)-\left(1-\dfrac{1}{143}\right)\)

\(=5-1+\dfrac{1}{1\cdot3}-1+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}-1+\dfrac{1}{7\cdot9}-1+\dfrac{1}{9\cdot11}-1+\dfrac{1}{11\cdot13}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\)

\(=1-\dfrac{1}{13}=\dfrac{12}{13}\)

Sửa đề: \(98+99+\dfrac{142}{144}\) \(\rightarrow\dfrac{98}{99}+\dfrac{143}{144}\)  

Giải:

\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+\dfrac{62}{63}+\dfrac{98}{99}+\dfrac{143}{144}+\dfrac{194}{195}\) 

\(A=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{195}\right)\) 

\(A=7-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{195}\right)\) 

\(A=7-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\dfrac{14}{15}\right]\) 

\(A=7-\dfrac{7}{15}\) 

\(A=\dfrac{98}{15}\) 

Chúc bạn học tốt!

2 tháng 7 2020

\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}+\frac{142}{143}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)+\left(1-\frac{1}{143}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)

\(=6-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\right)\)

\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=6-\left(1-\frac{1}{13}\right)\)

\(=6-1+\frac{1}{13}\)

\(=5+\frac{1}{13}\)

\(=\frac{66}{13}\)

2 tháng 7 2020

Mk sửa lại 1 tí nha dòng thứ 5 :

\(A=6-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=6-\frac{1}{2}\left(1-\frac{1}{13}\right)\)

\(=6-\frac{1}{2}.\frac{12}{13}\)

\(=6-\frac{6}{13}=\frac{72}{13}\)

Mong bn bỏ qua nha

2 tháng 7 2018

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(=\frac{3-1}{3}+\frac{15-1}{15}+\frac{35-1}{35}+\frac{63-1}{63}+\frac{99-1}{99}\)

\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)

\(=5+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(=5+\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(=5+\frac{5}{11}=\frac{60}{11}\)

4 tháng 6 2018

A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

A = ( 1 - 1/3 ) + ( 1 - 1/15 ) + ( 1 - 1/35 ) + ( 1 - 1/63 ) + ( 1 - 1/99 )

A = ( 1 + 1 + 1 + 1 + 1 ) - ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )

A = 5 - \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

A  = 5 - ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 )

A = 5 - ( 1 - 1/11 ) 

A = 5 - 10/11

A = 45/11

4 tháng 6 2018

Dấu \(.\)là dấu nhân 

\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(\Rightarrow A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)

\(\Rightarrow A=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(\Rightarrow A=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\frac{10}{11}\)

\(\Rightarrow A=5-\frac{5}{11}\)

\(\Rightarrow A=\frac{55}{11}-\frac{5}{11}\)

\(\Rightarrow A=\frac{50}{11}\)

~ Ủng hộ nhé 

11 tháng 5 2019

Dấu chấm là dấu nhân

\(P=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(P=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)

\(P=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(P=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(P=5-\frac{1}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(P=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(P=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(P=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(P=5-\frac{1}{2}.\frac{10}{11}\)

\(P=5-\frac{5}{11}\)

\(P=\frac{55}{11}-\frac{5}{11}\)

\(P=\frac{50}{11}\)

8 tháng 7 2017

\(A=\dfrac{14}{8.11}+\dfrac{14}{11.14}+\dfrac{14}{14.17}+.....+\dfrac{14}{197.200}\)

\(A=\dfrac{14}{3}\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\dfrac{24}{200}=\dfrac{28}{25}\)

\(B=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+...+\dfrac{7}{399}\)

\(B=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+.....\dfrac{7}{19.21}\)

\(B=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\dfrac{6}{21}=1\)

29 tháng 4 2019

\(\frac{1}{n\times\left(n+2\right)}=\frac{\left(n+2\right)-n}{n\times\left(n+2\right)}\)

\(=\frac{n+2}{n\times\left(n+2\right)}-\frac{n}{n\times\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)

\(=5-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(=5-\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\)

\(=5-\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(=5-\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)

\(=5-\frac{1}{2}+\frac{1}{22}=\frac{50}{11}\)

29 tháng 4 2019

                              =50/11