lời giải kèm hình vẽ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: góc ABH+góc EBC=góc ABC
góc ACK+góc ECB=góc ACB
mà góc ABH=góc ACK;góc ABC=góc ACB
nên góc EBC=góc ECB
=>ΔEBC cân tại E
c: AB=AC
EB=EC
=>AE là trung trực của BC
=>AE vuông góc với BC
a) Vì \(AB=AC\) (giả thiết)
\(\Rightarrow\Delta ABC\) cân tại A
Mà \(AM\) là đường trung tuyến (giả thiết)
\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\)
b) Vì \(\Delta ABC\) cân tại A (cmt)
Mà \(AM\) là đường phân giác (cmt)
\(\Rightarrow AM\) là đường trung trực \(BC\)
\(\Rightarrow AM\perp BC\)
c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:
\(AC^2=AM^2+MC^2\) (định lí pitago)
\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)
d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:
\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)
\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MEF\) cân tại \(M\)
a, Xét tam giác ABC có : AB = AC
Vậy tam giác ABC cân tại A
Lại có M là trung điểm BC hay AM là trung tuyến
=> AM đồng thời là đường phân giác ^A
b, Xét tam giác ABC cân tại A
AM là đường trung tuyến đồng thời là đường cao
hay AM vuông BC
c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm
Theo định lí Pytago tam giác ABM vuông tại M
\(AM=\sqrt{AB^2-BM^2}=4cm\)
d, Xét tan giác AFM và tam giác AEM có :
^AFM = ^AEM = 900
AM _ chung
^FAM = ^EAM ( AM là phân giác )
Vậy tam giác AFM = tam giác AEM ( ch - gn )
=> FM = EM ( 2 cạnh tương ứng )
Xét tam giác MEF có FM = EM
Vậy tam giác MEF cân tại M
Áp dụng định lý Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow21^2+28^2=BC^2\\ \Rightarrow BC=\sqrt{21^2+28^2}\\ \Rightarrow BC=35\left(cm\right)\)
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)
a: ta có: \(\widehat{MAB}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AM//BC
ta có: \(\widehat{CAN}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//BC
Ta có: AM//BC
NA//BC
mà AM,AN có điểm chung là A
nên M,A,N thẳng hàng
b: Vì M,A,N thẳng hàng nên \(\widehat{MAB}+\widehat{BAC}+\widehat{CAN}=180^0\)
=>\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\)