A=2 mũ 2+2 mũ 4+...+2 mũ 20 chia hết cho 4 và 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
uses crt;
var i,t:integer;
begin
clrscr;
t:=0;
for i:=1 to 20 do
if i mod 4=0 then t:=t+i;
writeln(t);
readln;
end.
Câu 2:
uses crt;
var i,dem:integer;
begin
clrscr;
dem:=0;
for i:=1 to 20 do
if i mod 3=0 then dem:=dem+1;
writeln(dem);
readln;
end.
Bài 2
a)Ta có:\(2001^{2002}+2002^{2003}\)
=\(\left(.....1\right)+2002^{2000}.2002^3\)
=\(\left(.....1\right)+\left(....6\right).\left(.....8\right)\)
=\(\left(.....9\right)\)không chia hết cho 2
b)Ta có:\(861^7+972^2\)
=\(\left(.....1\right)+\left(......4\right)\)
=\(\left(......5\right)\)chia hết cho 5
Xin lỗi chị Đào Thị Ngọc Ánh em năm nay mới lên lớp 6 nên chỉ giải được câu a thôi.
a, Từ 1 đến 1000 có bao nhiêu số chia hết cho 5.
Đáp án là 200. Vì (1000 - 5) : 5 + 1= 200.
\(A=2\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{99}\right)⋮6\)
1
A5.S=5+5^2+5^3+5^4+...+5^21
5S-S=(5+5^2+5^3+5^4+...+5^21)-(1+5+5^2+^3+...+5^20)
4.S=5^21-1
S=5^21-1:4
^ LÀ MŨ
A:1=1^21
TA CÓ:5^21-1^21:4
5 KHÔNG CHIA HẾT CHO 6
1KHONG CHIA HẾT CHO 6
4KHOONG CHIA HẾT CHO6
SUY RA KHÔNG CHIA HẾT
B TUONG TỰ
3A
X+6CHIA HẾT CHO X+2
(X+2+4)CHIA HẾT CHO X+2
X+2:X+2
SUY RA 4:X+2
SUY RA X+2 LÀ ƯỚC CỦA 4
Ư(4)={1:2:4}
LẬP BẢNG
x+2 | 1 | 2 | 4 |
x | rỗng | 0 | 2 |
suy ra :x={0:2}
xin lỗi bạn,có một số câu mình không biết làm
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Số số hạng của S:
20 - 0 + 1 = 21 (số)
Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)
= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3¹⁸.13
= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13
Vậy S ⋮ 13
S= 1+3+32+33+34+...+319+320
S= (1+3+32) + (33+34+35) + ... + (318+319+320)
S= 13.1+ 32.(1+3+32) + 317.(1+3+32)
S= 13.1+32.13+317.13
S= 13.(1+32+317) \(⋮\) 13
S\(⋮\) 13
Vậy S\(⋮\) 13
\(A=2^2+2^4+...+2^{20}\)
\(=2^2\left(1+2^2+...+2^{18}\right)=4\left(1+2^2+...+2^{18}\right)⋮4\)
\(A=2^2+2^4+...+2^{18}+2^{20}\)
\(=2^2\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(=5\left(2^2+2^6+...+2^{18}\right)⋮5\)