K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8

\(6k+5\)Do \(p;q>5\Rightarrow p;q\) đều là số lẻ ko chia hết cho 3

\(\Rightarrow p;q\) có dạng \(6k+1\) hoặc \(6k+5\)

Mặt khác \(p< q< p+6\Rightarrow0< q-p< 6\)

\(\Rightarrow q-p\) không chia hết cho 6

\(\Rightarrow q;p\) không thể có cùng dạng \(6k+1\) hoặc cùng dạng \(6k+5\)

\(\Rightarrow\) 1 số có dạng \(6k+1\) và 1 số có dạng \(6k+5\)

Hay 1 số chia 6 dư 1, một số chia 6 dư 5

\(\Rightarrow p+q\) chia 6 dư 0

\(\Rightarrow p+q⋮6\)

29 tháng 3 2023

Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )

Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)

Vậy q=3k+2 nên p=3(k+1)+1

Đặt k=2m, 2m+1

Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)

Vậy k=2m+1

Suy ra \(q^3+p^3=18k^3+162k^2+180k+72\)

Dễ thấy \(180k+72⋮36\)

Cần cm \(18k^3+162k^2⋮36\)

Dễ thấy \(18k^3+162k^2\) chia hết cho 9 (1)

Vì m là số lẻ nên m chia 4 dư 1 hoặc 3

Xét 2 trường hợp suy ra \(18k^3+162k^2\) chia hết cho 4  (2)

Từ (1),(2) và 4 và 9 là 2 số nguyên tố cùng nhau

Suy ra \(18k^3+162k^2⋮36\) 

Vậy ta có điều phải chứng minh

 

 

29 tháng 3 2023

Từ đoạn Suy ra q3+p3=18k3+162k2+180k+72 mình viết nhầm m thành k :))))))))

19 tháng 4 2019

EM LÀ CON GÁI HAY TRAI VẬY 

19 tháng 4 2019

Có: \(x+y+z⋮6\)

\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)

\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)

\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)

\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)

\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)

\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)

Ta có:\(x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\)x+y+z là số chẵn.

\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn

\(\Rightarrow xyz⋮2\)

\(\Rightarrow3xyz⋮6\)

\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))

đpcm

29 tháng 1 2022

 

\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).

- Đặt pq=n , p-q=9

- Vì n là số nguyên nên: 9pq ⋮ (q-p)

*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).

*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.

- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).

*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.

- p-q=9 =>p=11 (thỏa mãn).

- Vậy p=11 ; q=2.

25 tháng 12 2015

vi q la so nguyen to >3 nen se co dang 3k+1 va 3k+2 (k thuoc N*)

neu q=3k+1 thi p=3k+3 nen p chia het cho 3 (loai)

khi q=3k+2 thi p=3k+4

q la so nguyen to >3 nen k la so le

ta co p+q=6(k+1) chia het cho 12

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó