Tính nhanh:
\(\frac{1}{99}-\frac{1}{99\times98}-\frac{1}{98\times97}-\frac{1}{97\times96}-...-\frac{1}{3\times2}\)
Các bạn vui lòng giải đầy đủ giúp mình. Thanks trước!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)
= 1 + -1 + 1/64
= 0 +1/64
= 1/64
Gọi \(A=\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow A=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(\Rightarrow A=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{9900}-\frac{98}{99}=\frac{1}{9900}-\frac{9800}{9900}\)
\(\Rightarrow A=\frac{-9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}=-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)
mình không biết nữa bằng bao nhiêu ấy nhỉ .......? .......? Sory ^.^
1/3 + 13/15 + 33/35 + 61/63 + 97/99
= 45/11 ( mình không tiện giải, để khi khác giải sau)
Chúc bạn may mắn!
\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(pt\Leftrightarrow\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{99.100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)
\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-\dfrac{1}{100}-1-\dfrac{1}{99}\)
\(=-\dfrac{1}{100}-1=-\dfrac{101}{100}\)
\(\Rightarrow=\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{99.97}+...+\dfrac{1}{2.1}\right)\)
\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-....+\dfrac{1}{2}-1\right)\)
\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-1\right)\)
\(\Rightarrow\dfrac{1}{100}-\dfrac{-98}{99}\)
=......... bn tính nhé
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+4}{2001}=\frac{x+4}{2002}+\frac{x+4}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\Rightarrow x+2004=0\)
=>x=-2004
vậy x=-2004
Ta xét riêng tử số:
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)
\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Bây giờ xét đến mẫu số:
\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)
\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)
tham khảo bài của mình tại http://olm.vn/hoi-dap/question/133172.html
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}\)
=\(\frac{1}{99}-\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\frac{97}{198}\)
=\(\frac{-95}{198}\)