mn giúp mik với ạ, mik cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+5x^2+8x-4=x^3+x^2+4x^2+4x+4x+4\)
\(=\left(x^3+x^2\right)+\left(4x^2+4x\right)+\left(4x+4\right)\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x^2+4x+4\right)\left(x+1\right)\)
\(=\left(x+2\right)^2\left(x+1\right)\)
\(x^3-5x^2+8x-4\)
\(=x^3-4x^2-x^2+4x+4x-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
Xong rùi đấy
Ta có ; x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2(x - 1) - 4x(x - 1) + 4(x - 1)
= (x - 1)(x2 - 4x + 4)
= (x - 1)(x - 2)2
=> x - 1 = 0
x - 2 = 0
=> x = 1
x = 2
Dựa vào các bài dưới đây tham khảo rồi thay số nhé :
Bài 1 : Câu hỏi của tri dung Le - Toán lớp 8 - Học toán với OnlineMath
Bài 2 : Câu hỏi của Nguyễn Ngọc Bảo Xuân - Toán lớp 8 - Học toán với OnlineMath
Bài 3 : Câu hỏi của Dương Quế Chi - Toán lớp 8 - Học toán với OnlineMath
\(x^3-5x^2+8x-4\)
\(=x^3-2x^2-3x^2+6x+2x-4\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-4\right)\)
\(=\left(x-2\right)\left(x^2-3x+2\right)\)
\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
`x^3 - 5x^2 + 8x + 4`
`= x^3 + x^2 + 4x^2 + 4x + 4x + 4`
`= x^2(x + 1) + 4x(x + 1) + 4(x + 1)`
`= (x + 1)(x^2 + 4x 4)`
`= (x + 1)(x + 2)^2`
\(x^3-5x^2+8x-4\\ =\left(x^3-x^2\right)+\left(-4x^2+4x\right)+\left(4x-4\right)\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left[x^2-2\cdot x\cdot2+2^2\right]\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)