K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1

Khi đó

 \(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)

\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)

\(=4\left(ab+bc+ca+a+b+c\right)+3\)

Vậy thì mn + np + pm chia 4 dư 3.

b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:

Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4

Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.

Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.

20 tháng 4 2021

không ạ !!!!!!!!!!

20 tháng 4 2021

Hình vẽ:

19 tháng 12 2021

giúp mình với

 

19 tháng 12 2021

a: Xét tứ giác APCQ có 

N là trung điểm của AC

N là trung điểm của PQ

Do đó: APCQ là hình bình hành

Suy ra: AQ//PC 

hay AQ//BC(1)

Xét tứ giác AEBP có 

M là trung điểm của AB

M là trung điểm của PE

Do đó: AEBP là hình bình hành

Suy ra: AE//BP

hay AE//BC(2)

Từ (1) và (2) suy ra E,A,Q thẳng hàng

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy

a: Xét ΔPAN có 

PM là đường trung tuyến

PM là đường cao

DO đó: ΔPAN cân tại P

b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPNA có 

PM là đường trung tuyến

NB là đường trung tuyến

PM cắt NB tại G

Do đó; G là trọng tâm của ΔPAN

Suy ra: PG=2/3PM=2(cm)

25 tháng 4 2021

^ ^             con gà

\_/