K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8

A B C D E F M N K

Xét tg AEF có

AE=AF (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn...)

=> tg AEF cân tại A \(\Rightarrow\widehat{AEF}=\widehat{AFE}\) (góc ở đáy tg cân)

Ta có

\(\widehat{AEF}=\widehat{MEB}\) (góc đối đỉnh)

\(\widehat{AFE}=\widehat{KFC}\) (góc đối đỉnh)

\(\Rightarrow\widehat{MEB}=\widehat{KFC}\)

Xét tg vuông MEB và tg vuông KFC có

\(\widehat{MEB}=\widehat{KFC}\left(cmt\right)\)

=> tg MEB đồng dạng với tg KFC (g.g.g)

 

a: Xét tứ giác DMHN có \(\widehat{DMH}+\widehat{DNH}=90^0+90^0=180^0\)

nên DMHN là tứ giác nội tiếp

Xét tứ giác DMKE có \(\widehat{DME}=\widehat{DKE}=90^0\)

nên DMKE là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{DFE}\) là góc nội tiếp chắn cung DE

\(\widehat{DSE}\) là góc nội tiếp chắn cung DE

Do đó: \(\widehat{DFE}=\widehat{DSE}\)

Xét (O) có

ΔDES nội tiếp

DS là đường kính

Do đó: ΔDES vuông tại E

Xét ΔDES vuông tại E và ΔDKF vuông tại K có

\(\widehat{DSE}=\widehat{DFK}\)

Do đó: ΔDES đồng dạng với ΔDKF

c: Kẻ tiếp tuyến Fx của (O)

Xét (O) có

\(\widehat{xFE}\) là góc tạo bởi tiếp tuyến Fx và dây cung FE

\(\widehat{EDM}\) là góc nội tiếp chắn cung EF

Do đó: \(\widehat{xFE}=\widehat{EDM}\)

mà \(\widehat{EDM}=\widehat{MKF}\left(=180^0-\widehat{MKE}\right)\)

nên \(\widehat{xFE}=\widehat{MFK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MK//Fx

Ta có: MK//Fx

OF\(\perp\)Fx

Do đó: OF\(\perp\)MK

a: Xét tứ giác BNMC có 

\(\widehat{BNC}=\widehat{BMC}=90^0\)

Do đó: BNMC là tứ giác nội tiếp

hay B,N,M,C cùng thuộc một đường tròn

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB\(\sim\)ΔANC

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{NAC}\) chung

Do đó: ΔAMN\(\sim\)ΔABC

6 tháng 3 2022

https://hoc24.vn/cau-hoi/cho-tam-giac-nhon-efg-cac-duong-cao-emfngk-cat-nhau-tai-hachung-minh-enmf-noi-tiep-va-widehatkmn2widehatkfnb-chung-minh-fkng-noi-tiep-va-xac-dinh-tam-p-cua-duong-tron-ngoai-tiep-tu-giac.5046725334376

cj giúp e vs ạ

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)

nên CGFB là tứ giác nội tiếp

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>AB\(\perp\)BD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔACD vuông tại C và ΔCFB vuông tại F có

\(\widehat{ADC}=\widehat{CBF}\)

Do đó: ΔACD~ΔCFB

c: ta có: BH\(\perp\)AC

CD\(\perp\)AC

Do đó: BH//CD

Ta có: CH\(\perp\)AB

BD\(\perp\)BA

Do đó: CH//BD

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

d: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

góc BMC=góc BNC=90 độ

=>BMNC nội tiếp

=>góc BMN+góc BCN=180 độ

=>góc AMN=góc ACB

mà góc A chung

nên ΔAMN đồng dạng với ΔACB

6 tháng 3 2015

tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn

b) ta có : góc ABK =0,5 sđ cung AK=90 độ

xet tam giac ABK và AFC có

góc ABK=góc AFC=90 độ

goc AKB =góc ACF (GÓC NT CHAN CUNG AB)

=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)

14 tháng 3 2017

Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn

B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ

Xét tam giác ABK

a: Sửa đề: CGFB

loading...

loading...

loading...

a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)

nên MCOD là tứ giác nội tiếp

b: Xét ΔMCA và ΔMBC có 

\(\widehat{MCA}=\widehat{MBC}\)

\(\widehat{AMC}\) chung

Do đó; ΔMCA\(\sim\)ΔMBC