Tìm n \(\in\) \(ℤ\)
a) 25 chia hết cho n+2
b) 2n + 4 chia hết cho n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
Ta nói rằng a chia hết cho b kí hiệu a b khi và chỉ khi tồn tại một số k ( k Z )sao cho a =bk
a b a = bk
Ta còn nói a là bội của b hay b là ước của a
B/Tính chất của quan hệ chia hêt :
1/phản xạ: a N và a o thì a a
2/ Phản xứng : a N và a O thì a a
Có x-2 : hết x-2
=>4x-8 : hết x-2
Mà 4x+3 : hết x-2
=>(4x+3)-(4x-8) : hết x-2
=>11 : hết x-2
còn lại lập bảng thử từng TH nhé
Ta có : 4x+3 chia hết cho x-2
\(\Leftrightarrow\) \(2\times\left(x-2\right)+7\) chia hết cho x-2
Mà 2 x ( x-2 ) chia hết cho x-2
\(\Rightarrow\) 7 chia hết cho x-2
hay \(x-2\inƯ_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy \(x\in\left\{3;1;9;-5\right\}\)
có x-2 chia hết x-2
=>4x-8 chia hết cho x-2
mà 4x+3 chia hết x-2
=>(4x+3)-(4x-8) chia hết x-2
=>11 chia hết x-2
Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8
=>(8^m+8^n) - (3^m+5^n) chia hết cho 8
=>3^n+5^m chia hết cho 8
Giả sử m,n đều là số chẵn .
Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )
=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )
=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )
=> Điều giả sử sai
=> m,n không cùng là số chẵn
Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết
=> Cả m,n đều là số lẻ
Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )
= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )
= 8.M + 8.N chia hết cho 8
Mà 3^m + 5^n chia hết cho 8 ( giả thiết )
=> 3^n + 5^m chia hết cho 8 ( đpcm )
Vậy 3^n + 5^m chia hết cho 8 .
Lời giải:
Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ
Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$
$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ
Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$
Ta có đpcm
Giả sử n và m là số chẵn ta có: \(\hept{\begin{cases}n=2k\\m=2p\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3^m=3^{2k}=9^k\\5^n=5^{2p}=25^p\end{cases}}\)
Ta có 9 chia cho 8 dư 1 nên 9k chia 8 dư 1
25 chia 8 dư 1 nên 25p chia 8 dư 1
\(\Rightarrow3^m+5^n\)chia 8 dư 2. Trai giả thuyết
Tương tự với n lẻ m chẵn và n chẵn m lẻ ta đều không thỏa đề bài. Từ đó ta có được là n,m phải là 2 số lẻ
Ta có:
\(3^m+5^n+3^n+5^m=\left(3^m+5^m\right)+\left(3^n+5^n\right)\)
\(=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)=8A+8B\)
\(\Rightarrow3^n+5^m=8A+8B-3^m-5^n\)
Ta thấy rằng \(3^m+5^n;8A+8B\)đều chia hết cho 8 nên \(3^n+5^m\)chia hết cho 8
a) 25 chia hết cho n + 2
=> n + 2 ∈ Ư(25)
=> n + 2 ∈ {1; -1; 5; -5; 25; -25}
=> n ∈ {-1; -3; 3; -7; 23; -27}
b) 2n + 4 chia hết cho n - 1
=> (2n - 2) + 6 chia hết chi n - 1
=> 2(n - 1) + 6 chia hết cho n - 1
=> 6 chia hết cho n - 1
=> n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
=> n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
a) 25 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(25) = {-25; -5; -1; 1; 5; 25}
⇒ n ∈ {-27; -7; -3; -1; 3; 23}
b) 2n + 4 = 2n - 2 + 6
= 2(n - 1) + 6
Để (2n + 4) ⋮ (n - 1) thì 6 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
⇒ n ∈ {-5; -2; -1; 0; 2; 3; 4; 7}