K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

a/ Xét tam giác AME và tam giác CBE có:

AE = EC

góc AEM = góc CEB

EM = EB

====> tam giác AME = tam giác CBE (c-g-c)

b/ Suy ra: AM = BC (2 cạnh tương ứng)(1)

góc AME = góc EBC ( 2 góc tương ứng)

Mà 2 góc này ở vị trí sole trong nên:

AM // BC

c/ Xét tam giác AFN và tam giác BFC có : góc AFN = góc BFC ( đối đỉnh)

FC = FN

AF = FB

=====> tam giác AFN = tam giác BFC ( c-g-c)

====> AN = BC ( hai cạnh tương ứng)(2)

góc ANF = góc FBC ( 2 góc tương ứng)

Từ (1) và (2) suy ra : AM = AN

d/ Vì góc ANF = góc FBC mà 2 góc này ở vị trí sole trong nên AN // BC

Ta có : AN//BC

AM // BC

Suy ra: M,A,N thẳng hàng ( tiên đề ocolit)

Giải thích: Qua một điểm nằm ngoài một đường thẳng,chỉ có một đường thẳng song song với đường thẳng cho trước

26 tháng 12 2021

a: Xét ΔABI và ΔKCI có

IA=IK

\(\widehat{AIB}=\widehat{KIC}\)

IB=IC

Do đó: ΔABI=ΔKCI

26 tháng 12 2021

giup em cau b,c nx dc k a

loading...

a: Xét ΔAME và ΔBMC có

MA=MB

\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)

ME=MC

Do đó: ΔAME=ΔBMC

b: Xét ΔAFN và ΔCBN có

NA=NC

\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)

NF=NB

Do đó: ΔAFN=ΔCBN

c: ΔAME=ΔBMC

=>\(\widehat{MAE}=\widehat{MBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

d: ΔAME=ΔBMC

=>AE=BC

ΔANF=ΔCNB

=>\(\widehat{NAF}=\widehat{NCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC

ΔANF=ΔCNB

=>AF=CB

Ta có: AF=CB

AE=BC

Do đó: AE=AF

Ta có: AE//BC

AF//BC

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

12 tháng 12 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔAKM và ΔBKC ta có:

AK = BK (Vì K là trung điểm AB)

∠(AKM) =∠(BKC) (đối đỉnh)

KM=KC (giả thiết)

Suy ra: ΔAKM = ΔBKC(c.g.c)

⇒AM =BC (hai cạnh tương ứng)

Và ∠(AMK) =∠(BCK) (2 góc tương ứng)

Suy ra: AM // BC ( vì có cặp góc so le trong bằng nhau)

Tương tự: ΔAEN= ΔCEB(c.g.c)

⇒ AN = BC (2 cạnh tương ứng)

Và ∠(EAN) =∠(ECB) (2 góc tương ứng)

Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)

Ta có: AM // BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay A,M,N thẳng hàng (1)

Lại có: AM = AN ( vì cùng bằng BC) (2)

Từ (1) và (2) suy ra: A là trung điểm của MN

30 tháng 11 2015

M A N B C K E

Xét \(\Delta AMKvà\Delta BKCcó:\)

KA=KB

góc MKA=góc BKC

KM=KC

\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)

\(\Rightarrow\)AM=BC                                                  (1)

\(\Rightarrow\)MA//BC (góc M so le trong với góc C)      (3)

Xét \(\Delta AENvà\Delta BECcó:\)

EA=EC

góc AEN=góc BEC

EN=EB

\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)

\(\Rightarrow\)NA=BC                                                (2)

\(\Rightarrow\)NA//BC (góc N so le trong với góc C)     (4)

Từ (1) và (2) có: M,A,N thẳng hàng 

Từ (3) và (4) có: AM=AN

a: Xét ΔAIM và ΔBIC có

IA=IB

\(\widehat{AIM}=\widehat{BIC}\)

IM=IC

Do đó: ΔAIM=ΔBIC

=>\(\widehat{IAM}=\widehat{IBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AM//BC

ΔIAM=ΔIBC

=>AM=BC

b: Xét ΔEAN và ΔECB có

EA=EC

\(\widehat{AEN}=\widehat{CEB}\)

EN=EB

Do đó: ΔEAN=ΔECB

=>\(\widehat{EAN}=\widehat{ECB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//CB

c: ΔEAN=ΔECB

=>AN=CB

AN//CB

AM//CB

AN,AM có điểm chung là A

Do đó: M,A,N thẳng hàng

mà MA=NA

nên A là trung điểm của MN

5 tháng 8 2018

Trả lời:

Mình ghi các bước giải nha!!

B1:  Xét \(\Delta MAK\)và \(\Delta CBK\)

\(\Rightarrow MA=BC\)( 2 cạnh tương ứng )

Mà \(AMKvàKCB\left(SLT\right)\)

\(\Rightarrow AM//BC\)

B2: Xét \(\Delta NAE\)và \(\Delta BCE\)

 \(\Rightarrow AN=BC\) ( 2 cạnh tương ứng )

Mà.........( tương tự như phần trên)

B3: Do \(AM//BC\) và \(AN//BC\) \(\left(CMT\right)\)

\(\Rightarrow M;A;N\) thẳng hàng

mà   \(AM=BC;AN=BC\)

\(\Rightarrow\) \(AM=AN\)

Hay A là trung điểm của \(MN\)

~ học tốt ~