a. Cho phân số A = \(\dfrac{n+1}{n}\) (n ϵ \(ℤ\); n ≠ 0). Tìm n để A là phân số tối giản
b. Cho phân số B = \(\dfrac{n-1}{n-2}\) (n ϵ \(ℤ\); n ≠ 2). Tìm n để B là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4
=>10n-18 chia hét cho 2n+4
=>10n+20-38 chia hết cho 2n+4
=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
a)Để A là phân số thì n−3≠0n−3≠0 hay n≠3
b)câu b mình ko chắc chắn lắm
n+1⋮n-3
n-3+4⋮n-3
vì n-3 ⋮ n-3
nên 4⋮n-3
⇒n-3∈Ư(4)
Ư(4)={1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 3 | 5 | 1 | 7 | -1 |
⇒n∈{4;3;5;1;7;-1}
a; A = \(\dfrac{n+1}{n}\)
ƯCLN(n + 1; n) = d
⇒ \(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
⇒ n + 1 - n ⋮ d
⇒ (n - n) + 1 ⋮ d
⇒ 1 ⋮ d
Vậy d = 1
Hay A = \(\dfrac{n+1}{n}\) là phân số tối giản với mọi n khác 0
b; B = \(\dfrac{n-1}{n-2}\) (n \(\in\) Z; n ≠ 2)
Gọi ƯCLN (n - 1; n - 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)
⇒ (n - 1 - n + 2) ⋮ d
⇒ (n - n) + (2 - 1)⋮ d
1 ⋮ d
B = \(\dfrac{n-1}{n+2}\) là phân số tối giản với mọi 2 ≠ n \(\in\) Z