K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8

\(\left(3x-3\right)^2+\left(4y+2\right)^2=0\)

Ta có:

`(3x-3)^2>=0` với mọi x

`(4y+2)^2>=0` với mọi x

`=>(3x-3)^2+(4y+2)^2>=0` với mọi x,y

Mặt khác: `(3x-3)^2+(4y+2)^2=0`

Dấu "=" xảy ra: `3x-3=0` và `4y+2=0`

`=>3x=3` và `4y=-2`

`=>x=3/3=1` và `y=-2/4=-1/2` 

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

NV
26 tháng 3 2021

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)

20 tháng 8 2015

 

 2x^2 - 3x -2 = 0  

<=>2x2+x-4x-2=0

<=>x.(2x+1)-2.(2x+1)=0

<=>(2x+1)(x-2)=0

<=>2x+1=0 hoặc x-2=0

<=>x=-1/2 hoặc x=2

x^2 +2y^2 - 2xy + 4y = -4

<=>x2+2y2-2xy+4y+4=0

<=>x2-2xy+y2+y2+4y+4=0

<=>(x-y)2+(y+2)2=0

<=>x-y=0 và y+2=0

*y+2=0

<=>x=-2

*x-y=0

<=>x=y=-2

20 tháng 8 2015

1. 2x^2 - 3x - 2 = 0 <=> đen ta = 3^2 - 4x2x-2 = 25 > 0 <=> x1 = -0.5: x2= 2

NV
24 tháng 7 2021

Đường thẳng song song d nên nhận (3;-4) là 1 vtpt

Phương trình:

\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)

12 tháng 2 2016

\(\int^{3x-4y=-2}_{5x+2y=14}\Rightarrow\int^{3x-4y=-2}_{10x+4y=28}\)

Cộng 2 vế ta đc: 13x = 26 => x = 2

Thay x = 2 vào 3x - 4y = -2 ta đc:

3.2 - 4y = -2 => 4y = 8 => y = 2 

Vậy x = 2 , y = 2

12 tháng 2 2016
  • 3x-4y=-2
  • 10x+4y=28

=>cộng hai pt

=>13x=26=> x=2=>y=2

28 tháng 7 2018

Viết lại phương trình thứ 2 của hệ thành:

\(\hept{\begin{cases}x^2+x\left(y-3\right)+y^2-4y+4=0\\y^2+y\left(x-4\right)+x^2-3x+4=0\end{cases}}\)   \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta_x\ge0\\\Delta_y\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}1\le y\le\frac{7}{3}\\0\le x\le\frac{4}{3}\end{cases}}\)

Thế  \(xy=-x^2-y^2+3x+4y-4\)từ pt  (2)  vào pt  (1)  ta được:

\(3x^3+18x^2+45x-3y^3+3y^2+8y-108=0\)

  • Xét hàm số:  \(f\left(x\right)=3x^3+18x^2+45x\)trên  \(\left[0;\frac{4}{3}\right]\)ta có:  \(f'\left(x\right)=9x^2+6x+45>0\)

nên hàm số   f(x)   đồng biến.  suy ra:  \(f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)

  • Xét hàm số:  \(g\left(y\right)=-3y^3+3y^2+8y-108\)trên \(\left[0;\frac{7}{3}\right]\)ta có:  \(g'\left(y\right)=-9y^2+6y+8,\)

\(g'\left(y\right)=0\)\(\Leftrightarrow\)\(y=\frac{4}{3}\) suy ra: \(g\left(y\right)\le g\left(\frac{4}{3}\right)=\frac{-892}{0}\)

suy ra:   \(f\left(x\right)+g\left(y\right)\le0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y=\frac{4}{3}\)

thử lại thấy đúng

nên cặp nghiệm \(\left(x;y\right)=\left(\frac{4}{3};\frac{4}{3}\right)\)thỏa mãn hệ

p/s: chúc bạn học tốt, cách này đối vs bạn chắc khó hiểu, có j thì hỏi thầy cô dạy cho dễ hiểu nha hoặc ib mk (nhưng mk mak giải thích thì chắc bạn khó hiểu hơn ^^ ko có khiếu ăn nói)

19 tháng 6 2017

Từ \(2x+3y=5\Rightarrow2x=5-3y\Rightarrow x=\frac{5-3y}{2}\)

Thay \(x=\frac{5-3y}{2}\) vào pt(2) ta có:

\(\left(\frac{5-3y}{2}\right)^2+4y^2-3\cdot\frac{5-3y}{2}-2=0\)

\(\Leftrightarrow\frac{1}{4}\left(25y^2-12y-13\right)=0\)

\(\Leftrightarrow25y^2-12y-13=0\)

\(\Leftrightarrow\left(y-1\right)\left(25y+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\25y+13=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=1\\y=-\frac{13}{25}\end{cases}}\)

*)Xet \(y=1\)\(\Rightarrow x=\frac{5-3y}{2}=\frac{5-3\cdot1}{2}=1\)

*)Xét \(y=-\frac{13}{25}\)\(\Rightarrow x=\frac{5-3\left(-\frac{13}{25}\right)}{2}=\frac{82}{25}\)

19 tháng 6 2017

từ gt 2 suy  ra x=(5-3y)/2 thay và vế 1 là ra

3 tháng 10 2021

d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)

\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)^2\le8\)

Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)

Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)

Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)