Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có diện tích của tam giác: S = 1/2a.h.
Trong đó: a là độ dài cạnh đáy, h là độ dài đường cao
Chọn đáp án C.
Theo đề, ta có:
\(5^2+\left(a-1\right)^2=a^2\)
\(\Leftrightarrow a^2=a^2-2a+1+25\)
=>a=13
gọi độ dài cạnh huyền là x(cm)(x>0)
độ dài cạnh góc vuông còn lại là:
x-4(cm)
vì đây là 1 tam giác vuông nên ta có pt:
12*+(x-4)*=x*(định lí py-ta-go)
<=>144+x*-8x+16=x*
<=>144+x*-8x+16-x*=0
<=>160-8x=0
<=>8x=160
<=>x=20(cm)
vậy độ dài cạnh huyền của tam giác đó là 20 cm
(lưu ý dấu * ở đây là mũ 2 cj nhé)
Gọi độ dài cạnh góc vuông 1 là x
=>Độ dài cạnh góc vuông 2 là x+2
Theo đề, ta có: x^2+x^2+4x+4=5^2=25
=>2x^2+4x-21=0
=>x=(-2+căn 46)/2
=>Độ dài cạnh góc vuông 2 là (2+căn 46)/2
Độ dài đường cao là:
\(\dfrac{\left(-2+\sqrt{46}\right)\left(2+\sqrt{46}\right)}{2}:5=\dfrac{46-4}{2}:5=\dfrac{42}{10}=4,2\)
Mình làm thế này có ổn ko?
Gọi tam giác ABC vuông tại A cạnh huyền BC là 10cm và đường cao AH (H thuộc BC) là 6cm
Vậy ta có: \(HB+HC=10\)
Dùng hệ thức lượng trong tam giác vuông ta có: \(HB.HC=AH^2=36\)
Vậy ta có: \(\hept{\begin{cases}HB+HC=10=S\\HB.HC=36=P\end{cases}}\)\
Vì \(S^2-4P=10^2-4.36\)\(=100-144=-44< 0\)
Vậy không có HB, HC nào thỏa mãn hpt trên (trái với hệ thức lượng trong tam giác vuông)
Vậy không có tam giác vuông có cạnh huyền là 10cm và đường cao tương ứng với cạnh huyền là 6cm
Gọi ba cạnh của ▲ là a,b,c>0
Giả sử cạnh huyền ▲ là a thì:
a² =b²+c² <=> b²+c²=13² =169 (1)
chu vi ▲ là 30 <=> a+b+c =30 <=> b+c = 30-13=17
<=> c= 17-b (2)
thay (2) vào (1) đc:
b² + (17-b)² =169 <=> b² -17b + 60 = 0
<=> (b-12)(b-5) = 0
<=> b=5 hoặc b=12
tương ứng c=12 và c=5
Vậy hai cạnh góc vuông dài 5m và 12m
ΔABC vuông tại A có đường cao AH, BC = 20cm, AB = 12cm. Ta tính HC.
ΔABC và ΔHBA có:
Gọi số đo độ dài hai cạnh góc vuông của tam giác vuông đó là x(cm), y (cm)
( 0 < y < x < 10)
Hai cạnh góc vuông có độ dài hơn kém nhau 2cm nên ta được x – y = 2 , (1).
Theo định lý Pytago ta có: x 2 + y 2 = 10 2 = 100 ( 2 )
Từ (1) và (2) ta có hệ phương trình:
Từ (1) suy ra: x= y+ 2 thay vào (2) ta được:
( y + 2 ) 2 + y 2 = 100 ⇔ y 2 + 4 y + 4 + y 2 = 100 ⇔ 2 y 2 + 4 y − 96 = 0 hay y 2 + 2 y − 48 = 0
Giải ra ta được: y 1 = 6 ; y 2 = - 8 < 0 ( loại)
Với y= 6 suy ra x = 8.
Vậy độ dài các cạnh góc vuông của tam giác vuông là 6cm và 8cm.
Độ dài cạnh huyền là:
\(\sqrt{3^2+7^2}=\sqrt{9+49}=\sqrt{58}\left(cm\right)\)
Bình phương cạnh huyền là:
32 + 72 = 58(cm2)
Cạnh huyền là: \(\sqrt{58}\) m