có 1 số cái bút nếu chia mỗi hộp 9 cái thi thừa 15 cái nếu chia mỗi hộp 12 cái thi vừa đủ .hỏi có bao nhiêu cái bút
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có một số cái bút nếu chia cho mỗi ......
Mình dịch rồi đó
1)Số bánh còn lại bằng:
1 - 1/4 = 3/4 (số bánh ban đầu)
Số bánh còn lại là:
10000 x 3/4 = 7500 (cái)
Số hộp bánh là:
7500 : 8 = 937 (hộp, dư 4 cái bánh)
Đ/s:....
2) Số bút lấy đi là:
9 x 2 = 18 (cái)
Ta có: Số bút ở 9 hộp nguyên - 18 cái bút = Số bút ở 3 hộp nguyên
18 cái bút = Số bút ở 9 hộp nguyên - số bút ở 3 hộp nguyên
18 cái bút = Số bút ở 6 hộp nguyên
Số bút trong 1 hộp nguyên là:
18 : 6 = 3 (cái)
Số bút ban đầu là:
3 x 9 = 27 (cái)
Đ/s:...
Giả sử 39 hộp bút chì Tuấn mua đều là loại bút chì 2B
=> 39 hộp bút chì loại 2B có tất cả số cái là:
15 x 39 = 585 ( cái )
Vậy số bút chì bị thiếu so với đề bài là:
915 - 585 = 330 (cái)
Mỗi hộp bút chì HB hơn mỗi hộp bút chì 2B là:
30-15=15 (cái)
Tuấn mua số hộp bút chì HB là:
330:15=22 (hộp)
Tuấn mua số hộp bút chì 2B là:
39-22=17 (hộp)
Đ/S:...
_HT_
1 hộp bút hết số tiền là :
18000 : 6 = 3000 ( đồng )
9 hộp bút hết số tiền là :
3000 x 9 = 27000 ( đồng )
Đáp số : 27000 đồng
1 hộ bút hết số tiền là :
18000 : 6 = 3000 ( đồng )
9 hộp bút hết số tiền là :
3000 x 9 = 27000 ( đồng )
Đáp số : 27000 đồng
Mỗi hộp có số bút là:12:3=4(cái bút)
Đáp số 4 cái bút
Chúc em học tốt
Xét tổng của 6 hộp được:
31+20+19+18+16+15=119( hộp)
Do lớp 6A nhận gấp 2 lần số bút máy lớp 6B nhận nên số bút cả 2 lớp được nhận chia hết cho 3. Lấy 119 trừ lần lượt cho số bút mỗi
hộp đánh số từ 1-6 thì có duy nhất hộp 2 khi trừ ta được 1 số chia hết cho 3.
Do đó, Hai lớp 6A và 6B đã nhận được 5 hộp thì không có hộp số 2 có 20 cái bút.
Tổng số bút của 2 lớp nhận được là :
119-20=99 cái bút.(1)
Mà lớp 6A nhận gấp 2 lần số bút máy lớp 6B nhận (2)
Từ (1),(2) giải bài toán tổng tỉ ra thì ta có lớp A đc: 66 cái bút. Lớp B có 33 cái.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.