Tìm tất cả các bộ ba số nguyên dương (p;q,n) , trong đó p,q là các số nguyên tố , thỏa mãn :
p(p+3) + q(q+3)=n(n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em làm cô vui lòng xem giúp em ạ
Có: \(x,y,z>0\)
Nên: \(7^y>1\)
Mà \(7^y+2^z=2^x+1\)(1)
\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)
Xét TH1: y lẻ
Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)
\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)
Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)
\(\Leftrightarrow7^y-1\equiv2\)(mod 4)
Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)
Thay vào PT: \(2^x-2=7^y-1\)
\(\Leftrightarrow2^x=7^y+1\)
\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)
Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)
Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)
TH2: Khi y chẵn:
\(2^z\left(2^{x-z}-1\right)=7^y-1\)
Vì y chẵn nên:
\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)
Vì: \(2^{x-z}-1\equiv1\)(mod 2)
Nên: \(2^z=16\Rightarrow z=4\)
Thế vào:
\(2^x+1=7^y+16\)
\(\Leftrightarrow2^x=7^y+15\)
\(\Leftrightarrow2^x=7^y+7+8\)
\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)
\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)
Vì S chia hết cho 8
nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)
\(\Rightarrow y=2\)
Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)
Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
chdfxsd