cho số 49.n+ 7 chia hết cho 8 ( n€ N*). Chứng tỏ rằng:
a. 97n + 23 chia hết cho 8
b. 3a + 2b chia hết 17 《=》10a + b chia hết cho 17
Ai làm dúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ta có:
3a+2b\(⋮\)17
=>8.(3a+2b)\(⋮\)17
=>24a+16b\(⋮\)17
=>24a+10a+16b+b
=34a+17b
=17.(2a+b)\(⋮\)17
Mà 24a+16b=8.(3a+2b)\(⋮\)17
=>10a+b\(⋮\)17
Chúc bn học tốt
A=3a+2b ; B=10a+b
=> 10 A -3B = 30a+20b - 30a -3b = 17b chia hết cho 17
Vì A=3a+2b chia hết cho 17 => 10A chia hết cho 17 => 3B chia hết cho 17
=> B=10a+b chia hết cho 17.
3a + 2b chia hết cho 17
17a + 3a+ 2b chia hết cho 17 (17 a chia hết cho 17)
20a + 2b chia hết cho 17
2(10a + b) chia hết cho 17
Mà UCLN(2 , 17) = 1
< = > 10a + b chia hết cho 17
51a:17
=>51a-a+5b:17
=>50a+5b:17
=>5.(10a+b):17
=>10a+b chia hết cho 17
tích nha ,chắc chắn đó
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
Chứng minh rằng : 10a+b chia hết cho 7 hay chia hết cho 17 vậy
\(\text{Ta có :}2(10a+b)-(3a+2b)=20a+2b-3a+2b\)
\(=17a\)
Vì 17 chia hết cho 17 nên 17a chia hết cho 17
\(\Rightarrow2(10a+b)-(3a+2b)⋮17\)
Vì 3a + 2b chia hết cho 17 \(\Rightarrow2(10a+b)⋮17\)
Mà \((2;17)=1\)nên \(10a+b⋮17\)
Vậy nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
theo đề ta có :10a+b=(3a+2b).2
Mà đề cho 3a+2b⋮17
⇒(3a+2b).2⋮17
Vậy 10a+b⋮17
theo đề ta có :10a+b=(3a+2b).2
Mà đề cho 3a+2b⋮17
⇒(3a+2b).2⋮17
Vậy 10a+b⋮17
đúng thì tick cho mình nha mn
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Ta có \(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Leftrightarrow27a+18b⋮17\)
\(\Leftrightarrow17\left(a+b\right)+10a+b⋮17\)
\(\Leftrightarrow10a+b⋮17\left(đpcm\right)\)