Cho đường thẳng d có phương trình y=(m-1)x+2.Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $3m+1\neq 0$
Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$
Vì $A\in Ox$ nên $y_A=0$
$y_A=(3m+1)x_A-6m-1=0$
$\Rightarrow x_A=\frac{6m+1}{3m+1}$
Vậy $A(\frac{6m+1}{3m+1},0)$
Tương tự: $B(0, -6m-1)$
Gọi $h$ là khoảng cách từ $O$ đến $(d)$
Khi đó, theo hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$
Để $h$ max thì $\frac{1}{h^2}$ min
Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min
Áp dụng BĐT Bunhiacopxky:
$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$
$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$
Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$
$\Leftrightarrow m=-1$
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.
$M\in (d), \forall m$
$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$
$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\)
Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)
b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$
Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$
Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:
\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)
Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)
c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min
$\Leftrightarrow (m-2)^2+1$ min
Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$