K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Để P là một số nguyên 

=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng sau 

\(n-1\)\(1\)\(5\)\(-5\)\(-1\)
\(n\)\(2\)\(6\)\(0\)\(-4\)

Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\) 

9 tháng 11 2017

Để \(P\in Z\) thì \(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(3\left(n-1\right)⋮\left(n-1\right)\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)

Vậy n \(\in\left\{2;0;6;-4\right\}\)

10 tháng 11 2017

\(P=\dfrac{3n+2}{n-1}=\dfrac{3n-3+5}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

\(\Rightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\left(tm\right)\)

25 tháng 11 2021

\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

25 tháng 11 2021

thank

15 tháng 3 2021

kkkkk

15 tháng 3 2021

kkkkkk

7 tháng 3 2020

a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)

Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)

Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)

Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0

b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Để A là số nguyên thì 6x-1 chia hết cho 3x+2

\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2

Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

3x+2-5-115
3x-7-3-13
x\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1

Vậy x={-1;1} thì A nguyên

7 tháng 12 2016

Để P là số nguyên

=> 2n-1 Chia hết cho n-1

     2n-2+1 Chia hết cho n-1

     2(n-1) +1 Chia hết cho n-1

 Có 2(n-1) chia hết cho n-1

 => 1 chia hết cho n-1

=> n-1 \(\in\)Ư(1)

Lập bảng rồi bạn tự tính nhé

7 tháng 12 2016

Trùng tên. Mk thấy tên Ngọc Nhi ít người có lắm mak. Mk cũng tên lak Ngọc Nhi

a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}

b, 

Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7

\(​​\implies\) 2n+3=7k2n+3=7k

 \(​​\implies\)  2n=7k-3

 \(​​\implies\)  n=7k−327k−32 

Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên

:))

2 tháng 12 2019

Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để P \(\in\)Z <=> 1 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(1) = {1; -1}

Với n - 1 = 1 => n = 1 + 1 = 2

     n - 1 = -1 => n = -1 + 1 = 0

Vậy ...

9 tháng 5 2019

Để A là 1 phân số thì \(A\ne0\)

\(\Rightarrow n-3\ne0\)

\(\Rightarrow n\ne3\)

10 tháng 5 2019

\(Để\)\(\frac{3}{n-3}\)\(là\)\(số\)\(nguyên\)\(thì\)\(n-3\ne0\)

                                                       \(=>\)\(n\ne3\)

#miu

9 tháng 11 2017

 ta có: 
(x+3).(x+4)>0 
<=>x^2 + 7x + 12 > 0. 
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4 
x2= - 3 
hệ số a = 1 >0 
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3. 
Có thể xảy ra hai trường hợp: 
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1) 
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2) 
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4