Tìm các số nguyên n sao cho biểu thức P = \(\dfrac{3n+2}{n-1}\) là số nguyên
Giúp mk vs mai mk thi r Thanks các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(P\in Z\) thì \(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
mà \(3\left(n-1\right)⋮\left(n-1\right)\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy n \(\in\left\{2;0;6;-4\right\}\)
\(P=\dfrac{3n+2}{n-1}=\dfrac{3n-3+5}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)
\(\Rightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\left(tm\right)\)
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên
tìm các số nguyên n sao cho biểu thức sau là số nguyên:
P=\(\frac{2n-1}{n-1}\)
giúp mk nha các bạn..<3
Để P là số nguyên
=> 2n-1 Chia hết cho n-1
2n-2+1 Chia hết cho n-1
2(n-1) +1 Chia hết cho n-1
Có 2(n-1) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 \(\in\)Ư(1)
Lập bảng rồi bạn tự tính nhé
Trùng tên. Mk thấy tên Ngọc Nhi ít người có lắm mak. Mk cũng tên lak Ngọc Nhi
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để P \(\in\)Z <=> 1 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(1) = {1; -1}
Với n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
Vậy ...
Để A là 1 phân số thì \(A\ne0\)
\(\Rightarrow n-3\ne0\)
\(\Rightarrow n\ne3\)
\(Để\)\(\frac{3}{n-3}\)\(là\)\(số\)\(nguyên\)\(thì\)\(n-3\ne0\)
\(=>\)\(n\ne3\)
#miu
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để P là một số nguyên
=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau
Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\)