chứng minh rằng
a) 7^n+4 - 7^n chia hết cho 100
b) 20^15 -1 chia hết cho 11
c) 555^222 + 222^555 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
555222 + 222555 =222555 + 555555 - (555555 - 555222)
= 222555 + 555555 - 555222(555333 - 1)
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1)
555333 - 1 = (5553)111 - 1 \(⋮\) 5553 - 1
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79)
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 \(⋮\) 7
=> 555333 - 1 chia hết cho 7 (2)
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)
ta có 222555 đồng dư -1(mod7)
555222 đồng dư 1(mod7)
ta có 1+-1=0
=>222555 +555222 chia hết cho 7
a, Vì 10 ⁝ 2
8 ⁝ 2
nên (10⁴ - 8) ⁝ 2
b, Vì 555 ⁝ 37
222 ⁝ 37
Nên (555 - 222) ⁝ 37
c, Vì 942 \(⋮̸\)5
13 \(⋮̸\) 5
nên (942¹³ - 13⁴) \(⋮̸\) 5
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
7^6+7^5-7^4=7^4*(7^2+7-2)=7^4*55=7^4*5*11 chia hết cho 11
10^9+10^8+10^7=10^7*(10^2+10+1)=10^7*111=10^6*5*222 chi hết cho 222
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)