K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

giờ làm được chưa

9 tháng 8 2023

Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)

Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:

\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.

\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.

...

\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.

 Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.

8 tháng 8 2023

Xét dãy các số: (�+1)!+2,(�+1)!+3,...,(�+1)!+�+1.

Có (�+1)!+�⋮�mà (�+1)!+�>�nên số đó là hợp số. 

 =>Vậy dãy số trên gồm toàn hợp số. 

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...

 

 

DD
29 tháng 7 2021

Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).

Khoảng này có \(n\)số tự nhiên. 

Với \(k\)bất kì \(k=\overline{2,n+1}\)thì 

\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố. 

Do đó ta có đpcm.