tìm x sao cho a)(x-3)(x+4)>0
b) (x+5)(x-1)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0 thì
12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0
Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1
Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0 thỏa mãn a b ≤ 1
Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0
a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0
Do 0 < a b ≤ 1 nên BĐT này đúng
Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0 thỏa mãn a b ≤ 1
Đặt t = a b , 0 < t ≤ t ta được 2 1 + t + 2015 t 2 ≤ 2016
2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0
BĐT này đúng ∀ t : 0 < t ≤ 1
Vậy 1 1 + a + 1 1 + b + 2015 a b ≤ 2016. Đẳng thức xảy ra a = b = 1
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2
Chắc đề đúng là \(\left(m-1\right)x^2+2\left(m-1\right)x-m\le0\)
Để BPT đã cho có tập nghiệm \(S=\left[a;b\right]\) hữu hạn thì:
\(\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2+4m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó a; b sẽ là nghiệm của pt bậc 2
\(\Rightarrow\left\{{}\begin{matrix}a+b=-2\\ab=\frac{m}{1-m}\end{matrix}\right.\)
\(a^2+b^2+ab=6\)
\(\Leftrightarrow\left(a+b\right)^2-ab-6=0\)
\(\Leftrightarrow\frac{m}{m-1}-2=0\Rightarrow m=2\)
Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = (–∞; 1] \ {–4}.
Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{0; –1}
`(x-3)(x+4) > 0`
`=> x - 3` và `x + 4` cùng dấu
Trường hợp 1: `{(x-3>0),(x+4>0):}`
`=> {(x>3),(x>-4):}`
`=> x > 3`
Trường hợp 2: `{(x-3<0),(x+4<0):}`
`=> {(x<3),(x<-4):}`
`=> x < -4`
Vậy ...
a; (\(x-3\))(\(x+4\)) > 0
\(x-3=0\) ⇒ \(x=3\)
\(x+4\) = 0 ⇒ \(x=-4\)
Lập bảng ta có:
Theo bảng trên ta có:
\(x\) \(\in\) (- ∞; -4) \(\cup\)(3 ; + ∞)