Chứng minh : 14n + 3 và 21n + 4 là 2 số nguyên tố cùng nhau ( n thuộc N* )
Bài này dễ, bn nào làm đúng mk sẽ tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(ƯCLN\left(21n+4;14n+3\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)
\(\Rightarrow42n+9-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d.\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
do \(d\inℕ^∗\Rightarrow d=1\)
Vậy \(ƯCLN\left(21n+4;14n+3\right)=1\)hay \(21n+4\)và \(14n+3\)nguyên tố cùng nhau
Vì 14n+3 và 21n+4 là số nguyên tố cùng nhau
=> ƯCLN(14n+3;21n+4)=1
Gọi ƯCLN đó là a , ta có :
14n+3 chia hết cho a
21n+4 chia hết cho a
=> 3.(14n+3)=42n+9
2.(21n+4)=42n+8
=>42n+9-42n+8 chia hết cho a
=> 1 chia hết cho d
=> d=1
Vậy 14n+3 và 21n+4 là số nguyên tố cùng nhau
Vì 14n+3 và 21n+4 là hai sô nguyên tố cùng nhau
=>ƯCLN(14n+3,21n+4)=1
Ta có:
Gọi UCLN của hai số đó là d
=>14n+3 chia hết cho d
21n+4 chia hết cho d
=>3.(14n+3)=42n+9 chia hết cho d
2.(21n+4)=42n+8 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau(ĐPCM)
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d =>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên
Gọi d là một ước chung của hai số 21n+4 và 14n+3
21n+4 và 14n+3 chia hết cho d
=> (21n+4) - (14n+3) = 7n+1 chia hết cho d
=> 2(7n+1) = 14n+2 chia hết cho d
14n+2 và 14n+3 chia hết cho d
=> (14n+3) - (14n+2) = 1 chia hết cho d
Vậy d = 1
Ước chung lớn nhất bằng 1.