ai giải giúp em pt nghiệm nguyên này bằng nguyên lí cực hạn với ạ x^3=2y^3+4z^3
GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)
Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)
\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)
\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)
Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\), \(\left(\sqrt{2y-2}-2\right)^2\ge0\), \(\left(\sqrt{4z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)
Vậy (x;y;z) = (1;3;3)
Giả sử \(z\ge y\ge x\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{x}\Rightarrow x\le6\)
xét các TH
( còn 2 biến làm tườn tự )
\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)
\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)
\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)
Pt ước số
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Xét \(y=-1\)\(\Rightarrow x^3=2\left(l\right)\)
Xét \(y=-2\)\(\Rightarrow x=1\)
Xét \(y\ne-1,-2\)thì ta có:
\(\left(y-1\right)^3< y^3+2y^2+1=x^3\le\left(y+1\right)^3\)
\(\Rightarrow\orbr{\begin{cases}y^3+2y^2+1=y^3\\y^3+2y^2+1=\left(y+1\right)^3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)