Tìm tất cả số tự nhiên n sao cho
a) n+6:n+1
b) 4n+9:2n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Để n + 6 ⋮ n + 1 thì :
⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1
Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)
⇒ Ư(5)={ 1;5 }
n + 1 = 1 ⇒ n = 0
n + 1 = 5 ⇒ n = 4
Vậy .............
⋮⋮⋮a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a, 6 ⋮ n + 1
⇒ n + 1 \(\in\) Ư(6) = { 1; 2; 3; 6}
n \(\in\) {0; 1; 2; 5}
b, n + 6 ⋮ n + 1
n + 1 + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {1; 5}
n \(\in\) {0; 4}
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
ta có : 2n-1 chia hết cho 2n-1
2(2n-1) chia hết cho 2n-1
4n-2 chia hết cho 2n-1
áp dụng tính chất : a chia hết cho c
b chia hết cho c
thì a-b chia hết cho c
4n-2-(4n-5) chia hết cho 2n-1
3 chia hết cho 2n-1
2n-1 thuộc ( 1;-1;3;-3)
2n thuộc ( 2;0;4;-2)
n thuộc ( 1;0;2;-1)
a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)
a) \(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )
+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )
+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )
+) \(2n-1=-3\Rightarrow n=-1\) ( loại )
Vậy \(n\in\left\{1;0;2\right\}\)
a: \(n+6⋮n+1\)
=>\(n+1+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;5\right\}\)
=>\(n\in\left\{0;4\right\}\)
b: \(4n+9⋮2n+1\)
=>\(4n+2+7⋮2n+1\)
=>\(7⋮2n+1\)
mà \(2n+1>=1\left(n\in N\right)\)
nên \(2n+1\in\left\{1;7\right\}\)
=>\(n\in\left\{0;3\right\}\)