giải phuơng trình
\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
help me mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) ( ĐK : \(x\ge-2\) )
\(\Leftrightarrow\sqrt{x+2-4\sqrt{x+2}+4}+\sqrt{x+2-6\sqrt{x+2}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
Ta có : \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|\)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|\ge\left|\sqrt{x+2}-2+3-\sqrt{x+2}\right|=1\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x+2}-2\ge0\\3-\sqrt{x+2}\ge0\end{matrix}\right.\Leftrightarrow2\le x\le7\)
Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)
Phương trình trở thành:
\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)
\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)
mình dùng cách khác nhé :((
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)
\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)
\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)
\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)
\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)
rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok
b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)
Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)
\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
Kl: x=19, y= 5, z=1890
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-\dfrac{3}{2}\le x\le-1\end{matrix}\right.\)
\(\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2+\sqrt{x^2-1}=0\)
Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(\sqrt{2x+3}-1\right)^2\ge0\\\sqrt{x^2-1}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(\sqrt{2x+3}-1\right)^2=0\\\sqrt{x^2-1}=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
bài này dùng bdt nhé bạn
ta có \(\sqrt{\left(y-1\right)\cdot1}\le\frac{y-1+1}{2}=\frac{y}{2}\) ( bdt cô-si)
==> \(x\sqrt{y-1}\le\frac{xy}{2}\)
tương tự \(2y\sqrt{x-1}\le xy\)
do đó \(x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3}{2}xy\)
dấu ''='' xảy ra khi x=y=2
Đk :\(x\ge1;y\ge1\)
đề bài <=> \(\frac{xy}{2}-x\sqrt{y-1}+xy+2y\sqrt{x-1}=0\)
<=> \(\frac{x}{2}\left(y-2\sqrt{y-1}\right)+y\left(x-2\sqrt{x-1}\right)=0\)
<=> \(\frac{x}{2}\left[\left(y-1\right)-2\sqrt{y-1}+1\right]+y\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)
<=>\(\frac{x}{2}\left(\sqrt{y-1}-1\right)^2+y\left(\sqrt{x-1}-1\right)^2=0\)*
vì theo đk ta sẽ có để pt xảy ra thì :
\(\left(\sqrt{y-1}-1\right)^2=0\)và \(\left(\sqrt{x-1}-1\right)^2=0\)<=> x=2 và y=2
Mình giải nv đó, bạn xem và trình bày lại dùm mình nhé